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ABSTRACT 

A theoretical analysis was performed on a zoned resonator to 
determine whether both resonator feedback and a focused output could 

t be achieved with a single optical element.    It was found that under 
certain conditions that well-defined modes do exist and that a focused 
output could be obtained. 

This resonator was formed by two parallel mirrors (circular, 
plane, and equal sized) symmetrically placed about a common axis. 
One mirror had a uniform reflectivity of unity.    The other mirror 
was zoned.    It consisted of alternately transmitting and totally 
reflecting concentric zones.    The reflecting zones provided the reso- 
nator feedback and the transmitting zones provided the output coupling. 
The transmission zones were arranged in a manner similar to the 
transmission zones on a Freznel zone plate.    Thus, the zoned mirror 
tended to focus the field coupled out of the resonator. 

For a zoned resonator in which the output mirror consisted of 
alternately totally reflecting and totally transmitting zones of equal 
area the following results were obtained: 

1) When the focal length of the zoned mirror was less than the 
resonator length, stable resonator modes were obtained and 
sharp focusing of the output was achieved. 

2) When the focal length was approximately equal to the 
resonator length,  stable resonator modes were not obtained. 

3) When the focal length was greater than the resonator length, 
stable modes were obtained but sharp focusing of the output 
could not be achieved. 

Based on these findings it was concluded that a focused output was 
possible but that focusing at large distances was not feasible. 

■ ' 

The mode structures of zoned resonators were more irregular 
than the corresponding mode structures of unzoned resonators.    It 
was found that the mode structures could be made more regular by 
increasing the reflectivity of the transmission zones and/or 
decreasing the area of these zones.    The irregularity of these fields 
was more pronounced for resonators having large Fresnel numbers 
than for those having small Fresnel numbers. 

For resonators having small Fresnel numbers, the maximum 
focused intensity was achieved when the reflectivity of the transmitting 
zones was zero and the transmitting and reflecting zones were equal 

iii 



in area.    However,  maximum focused intensity per unit output power 
was achieved when the area of the transmitting zones was reduced 
and the area of the reflection zones correspondingly increased.    The 
optimum transmission area was about 74 percent of the area of the 
half-period zones.    Because their field structures are strongly 
dependent on the characteristics of the zoned mirror, the optimum 
values of reflectivity and area for resonators having large Fresnel 
numbers are almost impossible to predict.    However, optimum 
values do exist, and for a given configuration they could be found. 

Some of the zoned resonators analyzed had focused intensities 
several times greater than the maximum intensity of the resonator 
field.    However, the power passing through the main lobe in the 
focal plane was only about 20 percent of the total output power. 
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CHAPTER I 

INTRODUCTION 

A theoretical analysis was performed on a zoned resonator to determine 

whether both resonator feedback and a focused output could be achieved with a 

single optical element.   It was found that under certain conditions that well- 

defined modes do exist and that a focused output could be achieved. 

The zoned resonator was formed by two parallel mirrors symmetrically 

placed about a common axis.   These mirrors were circular, plane, and equal 

sized.   One mirror had a uniform reflectivity of unity.   The other mirror was 

a zoned mirror; it consisted of alternately totally reflecting and transmitting 

concentric zones.   The reflecting zones provided the resonator feedback and 

the transmitting zones provided the output coupling.   The transmission zones 

were arranged in a manner similar to the transmission zones on a Fresnel 

zone plate.1  This zoned mirror tended to focus the portion of the field coupled 

out of the resonator. 

A mode of this resonator is a field configuration which satisfies 

Maxwell's equations and the boundary conditions at the mirrors.   However, 

Jenkins, Francis A., and Harvey E. White, Fundamentals of Optics, 
McGraw-Hill Book Company, Inc., p. 360 (1957). 

1 



because of the lack of boundary conditions on the walls of the resonator, 

approximations are required in order to obtain the modes of the resonator. 

One of the most successful approximate methods of obtaining resonator modes 

is based on scalar diffraction theory.2"7 

This theory utilizes a scalar formulation of Huygen's principle to relate 

the field on each mirror in terms of the field on the other mirror.   Solutions 

obtained represent resonator modes.   These modes are field configurations 

such that, except for a change in magnitude and phase, they are reproduced 

after a double pass through the resonator.   With each double pass the resonator 

modes decrease in amplitude.   This decrease in amplitude results from trans- 

mission losses through the mirrors and diffraction losses through the open side 

2Fox, A. G., and Tingye Li, "Resonant Modes in a Maser Interferom- 
eter" Bell System Technical Journal, Volume 40, pp. 453-488 (1961). 

3Boyd, G. D., andj. P. Gordon, "Confocal Multimode Resonator for 
Millimeter Through Optical Wavelength Masers" Bell System Technical 
Journal. Volume 40, pp. 389-508 (1961). 

4Boyd, G. D., and H. Kogelnik, "Generalized Confocal Resonator 
Theory" Bell System Technical Journal, Volume 41, pp. 1347-1369 (1962). 

5Fox, A. G., and Tingye Li, "Modes in a Maser Interfoermeter with 
Curved and Tilted Mirrors" Proceedings of the IEEE, Volume 51, pp. 80-89 
(1963). 

6Li, Tingye, "Diffraction Loss and Selection of Modes in Maser 
Resonators with Circular Mirrors" Bell System Technical Journal, Volume 44, 
pp. 917-932(1965). " 

TFox, A. Gardner, and Tingye Li, "Computation of Optical Resonator 
Modes by the Method of Resonance Excitation" IEEE Journal of Quantum Elec- 
tronics, Volume QE-4, pp. 460-465 (1968). 



walls.   In an active laser resonator these losses would be compensated for by 

stimulated emission and steady-state oscillations could then occur. 

The usual form of the scalar diffraction theory for resonators assumes 

a constant resonator gain.   It does not account for either saturable gain or 

nonuniform gain distributions.   However, State and Tang8 and Fox and Li9 

modified the theory so that saturable gain could be considered.   They found, 

that if the small signal gain were not too large, the resonator modes had 

essentially the same configuration as those obtained when uniform gain was 

assumed.   Li and Skinner10 considered a resonator having nonuniform gain. 

They also found that the resonator modes were very similar to those obtained 

for resonators having uniform gain. 

It should also be mentioned that field configurations obtained from 

scalar diffraction theory have been compared to experimentally determined 

8Statz, H., and C. L. Tang, "Problem of Mode Deformation in Optical 
Resonators" Journal of Applied Physics, Volume 36, pp. 181f-1819 (1965). 

9Fox, A. G., and Tingye Li, "Effect of Gain Saturation on the Oscil- 
lating Modes of Optical Masers" IEEE Journal of Quantum Electronics. 
Volume QE-2, pp. 774-783 (1966). 

10Li, Tingye, and J. G. Skinner, "Oscillating Modas in Ruby Lasers 
with Nonuniform Energy Distributions" Journal of Applied Physics, Volume 36, 
pp.  2595-2596 (1965). 



modes.   It was found that the theory quite accurately predicted the measured 

mode structure."»n 

Thus, because of its general applicability, the scalar theory of optical 

resonators was utilized in analyzing the zoned resonator, and since gain has 

little effect on the resonator mode structure, a uniform gain was assumed. 

Recently, this method of resonator mode analysis was used to obtain the modes 

of a confocal resonator having a single output coupling aperture,13 and it has 

previously been used to obtain the modes of a Fabry-Perot resonator having 

coupling apertures in both mirrors.14 

This paper is divided into five main chapters.   In Chapter II the basic 

resonator equations are presented.   Also in Chapter n the equations expressing 

the output fields of the resonator are derived.   In Chapter III the characteristics 

of the zoned mirror are discussed.   The focusing properties of the zoned mirror 

and the optimization of the focused output are considered in detail.   In 

Chapter IV the numerical method used to solve the resonator equations is 

"Kogelnik, H., and W. W. Rigrod, "Visual Display of Isolated Optical- 
Resonator Modes" Proceedings of the IRE, Volume 5Ü, p. 220 (1962). 

12Rosenberger, D., "Mode Spectrum in the He-Ne Maser" Quantum 
Electronics — Paris 1963 Conference, by P. Grivet and N. Bloembergen, 
Volume 2, Columbia University Press, pp. 1301-1304 (1964). 

13McNice, Garner T., ?.nd Vernon E. Derr, ''Analysis of the Cylindrical 
Confocal Laser Resonator Having a Single Circular Coupling Aperture" IEEE 
Journal of Quantum Electronics, Volume QE-5, pp. 569-575 (1969). 

14Li, Tingye, and H. Zucker, "Modes of a Fabry-Perot Laser Resonator 
with Output Coupling Apertures" Journal of the Optical Society of America, 
Volume 57, pp. 984-986 (1967). 

4 



presented.   It is basically a power method; this is the method referred to by 

Fox and Li15 as the method of successive approximations. In Chapter V resona- 

tor mode control is discussed.   In Chapter VI the results of the analysis of the 

zoned resonator are presented. 

In Chapter VII characteristics of the zoned resonator are briefly sum- 

marized and conclusions presented. 

15Fox, A.G., and Tingye Li, "Resonant Modes in a Maser Interferom- 
eter" Bell System Technical Journal, Volume 40, pp. 453-488 (1961). 



CHAPTER n 

INTEGRAL FORMULATION OF THE RESONATOR PROBLEM 

This chapter is divided into three sections.   In the first, the integral 

form of the resonator equations is presented.   These equations express the 

field at a point on one mirror in terms of the integral of the field over the other 

mirror.   Solutions to these equations represent resonator modes. 

In the second section an expression for the output power from the 

resonator is developed.   This expression is given in terms of the resonator 

fields and the characteristics of the output mirror. 

In the last section an expression for the fields transmitted through the 

output mirror is determined.   This expression is valid for the Fresnel region 

of the resonator. 

A.   Resonator Equations 

A diagram showing the pertinent geometry of the self-focusing 

resonator is given in Figure 1.   This resonator is formed by two circular plane 

mirrors symmetrically located about the resonator axis.   The mirrors have 

equal radii, a , and they are separated a distance (d).   One of the mirrors, 

designated the input mirror, has a uniform reflectivity; the other mirror, the 

zoned mirror, has a reflectivity that is a function of mirror radius.   The polar 



RESONATOR 
AXIS 

INPUT MIRROR ZONED MIRROR 

Figure 1.   Resonator Geometry 

coordinates jr , $ \ and (r , <f> j are used to describe positions on the input 

and the zoned mirrors respectively. 

The modes of this resonator can be described by the integral equations 

first established by Fox and Li.'  They used a scalar formulation of Huygens 

principle to relate the field on one mirror in terms of the integral of the field 

on the other mirror.   Their equations are valid for resonators whose mirror 

dimensions are large compared to a wavelength and whose fields are essentially 

transverse electromagnetic and plane polarized in a single direction. 

The fields on the resonator mirrors can be written in the forms given 

below.2 On the input mirror the field is given by 

'Fox, A. G., ana Tingye Li, "Resonant Modes in a Maser Interferom- 
eter" BeU^s^en^Technicaljrourna^, Volume 40, pp. 453-488 (1961). 

2Li, Tingye, "Diffraction )^ss and Selection of Modes in Maser Resona- 
tors with Circular Mirrors" Bell System Technical Journal, Volume 44, 
pp. 917-932 (1965). 



E     (r ,</> \ = R    (r \e        S  , (II-l) 
mn\ s Ysy       ns^sy 

and on the zoned mirror the field is given by 

-jrntf» 
E     (v , <p \ = 5 irV        Z  . (II-2) mn\ z  ^        r.z\ zy 

The terms (m) and (n) are nonnegative integers, R   Ir j and R    (r j represent 

the radial variations of the fields, and exp (-jm# ) and exp (-jm0  j represent 

the azimuthal variations of the fields.   The f.zimuthal field variations are 

.sinusoidal and have a degeneracy of (m).   For a given angular degeneracy, the 

radial variations of the fields are related to each other by the following integral 

equations: 

1 
r 
0 

and 

R   (r \ =   f p NK   (r ,r \R    (r )T dr (II-3) ns\ s/      n   z    m\ z   s/  nzVz/ z   z 

1 
R    /r \ =   f p NK   /r ,r\R    /r V dr    . (n-4) nz\^ zj     •>    s     m\ z    sj   ns\ s/ s    s 

These equations are a normalized form of the usual resonator equations.   They 

have been normalized with respect to the radii of the mirrors in such a way 

that the mirror apertures are equal to one.   In this normalization the resonator 

Fresnel number was introduced.   This Fresnel number is given by 

a2 

N - _P_ ("-5) 
\d 



where \ is the wavelength of the fields within the resonatov medium.   Also 

included in these resonator equations are the terms p^ and p ; they represent 

the amplitude reflectivity of the zoned mirror and the input mirror respectively. 

These reflectivities, expressed as a function of normalized mirror radius, 

allow one to introduce the selective reflection characteristics of the zoned 

mirror into the resonator equations.   The term K   \r , r J is given by 

Km(Vrs) = 2^,m+lj
mK

r
S) 

exp [-Krz2+ 's')] •   (II"6) 

where (j) is the imaginary number ^PT, (m) is the order of the angular 

th 
degeneracy, and J    is the Bessel function of the first kind and m    order, 

m 

The bars over the fields, inside the integrals of equations (II-3) and 

(II-4), also represent a normalization.   This normalization is expressed as 

R 

ns\ si     ~ y 
*k) . J^L (1-7) 

v   * ns 

and 

/  v      Rnz(rz) 
R    IT \ =  i_£- . (H-8) nzl zJ y v   ' nz 

The terms y     and y     represent the values of the fields or. tht input and zoned 
ns nz 

mirrors, respectively, where the magnitudes of the fields are maximum. 

A resonator mode is a field distribution such that, after a double pass 

through the resonator, the field reproduces itself except for a change in ampli- 

tude and phase.3 As an example, suppose that R    ft \ is a resonator mode. 

3Fox, A. G., and Tingye Li, op. cit. 



By using equations (II-3), (II-4), (II-7), and (II-8), one can show that the 

field after a double pass through the resonator is given by   y   y   R    (r \  , 
ns nz ns^ n) 

In mode terminology, r , as given by 
n 

r    = Y    Y       , (II-9) n       ns nz 

represents the eigenvalue of the eigenfunction R    (r \.   Separately, y     and 
na\8f ns 

Y    do not have real significance; they are merely by-products of the analytical 
HZ 

procedure.   On the other hand, r   has physical meaning.   It represents the 

change in amplitude and phase of a resonator mode caused by a double pass in 

the resonator. 

Each resonator is described by a particular field distribution, and each 

distribution has a distinct eigenvalue.   Because of this uniqueness the double 

pass power loss of a resonator mode is also unique.   This loss is given by the 

expression 

L,  = i - ir i2 , (ii-io) dp n 

and it includes both diffraction and transmission losses.   As was stated above, 

the mirrors have amplitude reflectivities given by p  and p ; transmission z s 

losses are introduced by having mirror reflectivities with amplitudes less 

than unity. 

It has been show.i that the resonator modes are orthogonal over both 

mirrors.4  This suggests that any arbitrary field distribution can be decom- 

posed into orthogonal modes.   This is a standard technique which often 

4Fox, A. G., and Tingye Li, "Modes in a Maser Interferometer with 
Curved and Tilted Mirrors" Proceedings of the IEEE, Volume 51, pp. 80-89 
(1963). 
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facilitates not only the mathematical treatment of the problem, but also offers 

some insight into the physical processes involved.   Fourier analysis is an 

example where it is usual to think of the individual components as having 

physical meaning; action on the composite field can be thought of as a redistri- 

bution of the energy among the components. 

The resonator modes are denoted by the usual symbology of TEM ■mn 

This represents a transverse electromagnetic field with an angular mode num- 

ber of m and a radial mode number of n.   An arbitrary field distribution, 

£(r, <f>), can thus be written as the sum of all possible modes.   For fields on 

the input mirror, the total field is given by 

00 00 

i(r ,<j>\ =   T.     Y.  A    R    (r\ M s *s)       un  un   mn nsl s) v        '      m=0 n=0 v   ' 
cos md>    , vs (11-11) 

where the constants A     , because of the orthogonality of the modes over the 
mn 

surface of the mirror, are giver, by 

2TT 1 

mn 

f    TR    (T \ cos md>   i(x , <t) \r dr d0 J    J    ns^ s^ rg   \ sMsJ s    s ^s 

i ( R    (T \R    /r ^r dr J     ns \ sj  ns \ s^ s    s 

.    (11-12) 

B.   Output Power 

The output power of the self-focusing resonator is due to a portion 

of the resonator field being transmitted through the zoned mirror.   Consider 

the situation where the resonator is operating with a TEM      field distribution. 
mn 

The normalized field incident on the zoned mirror can be written as 
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E     (v , $ \ * R    (T \ cos m<f>    . (11-13) mn\ z *z)       tiz\ z) ^z 

The transmitted field is given by the product of this equation and the amplitude 

transmission coefficient of the zoned mirror.   If absorption is neglected, this 

transmission coefficient is related to the reflection coefficient by 

T   = (l - p »V1 . (11-14) 
z      \        z / 

The total power transmitted through the zoned mirror is proportional 

to the square of the absolute value of the transmitted field integrated over the 

zoned mirror.   Defining P   to be this output power, one can write 

prr = C^f    f lr E     (r ,4>'\ |2r dr d<f>    , (11-15) 
T        Tn    n     z mn\z    z)     z   z    z 

PT = CT / (X " ^z2)|Rnz(rz) 'Vz X    COs2 m*zd*z  '    (II"16) 

where C   is the proportionality constant.   By using equations (11-13) and 

(11-14) in equation (11-15) and separating the variables, the output power can 

be written as 

1 2ir 
f(l - P 2)|R   (r ^dr    f 
>Q \        z /   nz\ z)     z   z J 

The second integral has ehe value of (27r) for an angular degeneracy of zero, and 

it has the value of (IT) for higher-order angular degeneracies.   Therefore, for 

an angular degeneracy of zero the output power is given by 

1 

f 
0 

and for all other angular degeneracies the output power is given by 

1 

f 
0 

12 

PT(m = 0) = 2,CT / (l - Pz
2)lRnz(rz)lV

r
z   ■ <H-17> 

PT(m # 0) = 7rCT / (l - pz
2) |Rna(rz) iW    .        (il-18) 



The output power, as given in equations (11—17) and (11-18), is based 

on a maximum field amplitude of unity inside the resonator.   This measure of 

output power is a convenient term for comparing some resonator 

characteristics. 

C.    External Fields 

The Fresnel region outside the resonator is of particular impor- 

tance as it is there that the focused output is established.   The geometry of this 

region is shown in Figure 2.   The field of interest is located in a plane perpen- 

dicular to the resonator axis and located F distance from the output mirror; 

this plane is designated the F-plane, and the polar coordinates of a point in 

this plane are denoted by (T., <f> \. 

RESONATOR 
AXIS -7 

ZONED MIRROR 

Figure 2.   Geometry of Fresnel Region Outside Resonator 

The source field is that portion of the resonator field transmitted 

through the output mirror; thus, by using a cosine dependence for the angular 

variation of the resonator field, the source field is given by 
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[r R    A* \ cos m<£ 1.   The field In the F-plane, Ef/r , <j>\, resulting from 

this source field can be expressed as5 

•>   a -JkL< 
j      *   p    - e 

Ef (rf *f) =  Ä I  I    TzRnz(rz) COS m*z -if (1 + C0S 6) 

•  r dr d<f>    , (H-19) z   z    z 

where k is the wave number, (2ir/\), and where 0 is the angle between the sur- 

face normal of the source and the line segment between /r , (/> \ and (rf,(f>\ 

The cases of interest occur where both r   and r, are much smaller than F.   In 
z I 

this region 0 is small; therefore, if the term (cos 0) is set equal to one, 

equation (H-19) can be written as 

.   2* % /)kL« 

In this region of validity of this equation, that is, where 0 is small, the usual 

Fresnel approximations concerning L can also be made.   The term represent- 

ing the change in amplitude as a function of distance is approximated by 

TWT' (II"a) 

and in the phase term Lf is approximated by 

L   « 
r 2 + r.2 - 2r r„ cos 

F+-^  f Zf fe " »f) (11-22) 2F 

By using equations (11-21) and (11-22) inequation (11-20) and expanding 

the cosine term, the following form for the Fresnel field can be obtained: 

Silver, Samuel, Microwave Antenna Theory and Design, McGraw-Hill 
Book Company, Inc.,  New York, p. 167 (1949). 
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!M)-(^)äV«)4*(T)] 

&)(*/ 

2ir |kr r. 
z f exPH~f~  C0S (*f " 0z)+ m*zJ jd^ 

2TT 

il exp p 

% making use of the relations6 

kr r, 
z f 
F 

cos (♦,-♦,)- ra<f> d<p r dr   . 
z   z 

(11-23) 

exp|jm(y + /9)JjmW - -^ S exP(i^ cos iß ~ ß') + "^l) ^ 

(11-24) 

and 

expjjm(-|- /3)jJm(xy) =-^ /   exp{j[xycos (ß* - ß)  - m/3']}d^'  , 

(11-25) 

equation (11-23) can be reduced to 

:(rf*f) = cos mtf> 
...m+1      -jkF 
(j)        2?re 

\F I   TzRnz(rz) 

\   fr
Z
2+r^1T    f2^rf\ 

">* \—XF—/  Jm \-xT7 r dr      .    (11-26) 
z    z * exp 

As expected, the angular variation of the field is preserved, and 

Ef/r,,0.\ can be separated as 

6Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, 
Inc., New York, p. 373 (1941). 
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Ef(rf*f)=Rnf(rf)CMm*f • 

Thus, by neglecting the geometrical phase term, the radial variation of the 

field in the F-plane can be written as 

(H-27) 

*nf('f) 
(J)m+12, I    P 

XF 

• exp 

"Jo   ^"«M 

-3H     XF      ;lJm\-TF-/rz (U-28) 

To facilitate numerical computation? the radial distances can be nor- 

malized to unit output mirror radius by replacing r  by a r   and r. by a r . 

Then equation (11-28) can be written as 

1 
( 

0 
R *(T*\ "  [TMK   .ft ,r,\R    ft \r dr    , nf^f^     J    z   p mf ^ z   if  nz^ if z   z (n-29) 

where 

a 

p     XF M   —* (11-30) 

and 

Kmf(Vrf) = 2w<^m+ljm(2,rMpVf)eXP [-J,rMp(rz2 + rf2) ] ' 
(11-31) 

It must be remembered in using equation (11-29) that the radial distance is 

normalized to a ; for example, if r. = 2, the actual distance is /2a \. 

The transmitted field along the resonator axis can be obtained from 

equation (11-29) by setting r. equal to zero.   For the case where m is zero this 

axial field can be written as 
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Ef(°'*f) - 2* / VMp e**> [^Vz2]finz(rz) 

For cases where m is not equal to zero the axial field is zero. 

r dr    .   (n-32) z   z 
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CHAPTER HI 

CHARACTERISTICS OF THE ZONED MIRROR 

The focused output from the self-focusing resonator is established by 

the selective transmission characteristics of the output mirror.   This mirror 

is divided into alternately reflecting and transmitting zones.   The reflecting 

zones provide resonator feedback and the transmitting zones provide output 

coupling.   All of these zones arc concentric and are symmetrically located 

about the resonator axis. 

In this chapter the characteristics of this zoned mirror and its effects 

on the focusing properties of the self-focusing laser resonator are considered 

in detail.   The first section of this chapter is used to describe the method 

in which the output mirror is divided into half-period zones.   Following this, 

the basic focusing properties of the zoned mirror are established by consider- 

ing the condition of uniform illumination of the mirror. 

The field structure of a laser resonator is more accurately described 

by a Gaussian distribution than a uniform distribution.   Because of this, a 

section of this chapter considers the focusing achievable with Gaussian 

illumination of the zoned mirror. 

In the last section,  the optimization of the zoned mirror is consid- 

ered from the viewpoint of maximizing the intensity at the focal point per unit 
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output power.   It was found that by decreasing the areas of the transmission 

zones, and correspondingly increasing the areas of the reflection zones, opti- 

mum conditions existed.   Also discussed in this last section are some details 

concerning the maximum number of zones that can be placed on a mirror and 

the maximum focal distance. 

A.   Half-Period Zones 

Suppose that the output mirror represents a constant phase surface 

for an incident wave.   At the point F on the resonator axis, F distance from 

the output mirror, the wave can be viewed as consisting of circular, concen- 

tric half-period zones.   These zones are determined by the criterion that the 

tii                         tii 
radius separating the i    and the (i + 1)    zones, where i = 1, 2, 3 is 

th such that the distance from the outer edge of the i    zone to F is greater than 

F by (iA/2).   For the usual resonator configuration such that 

a   » X 
P 

and a distance F such that 

F » a    , 
P 

the path difference is given approximately by 

r2 

A=    Z 

2F 

The geometry depicting this path difference is shown in Figure 3.   The radius 

r ., corresponding to a path difference of (i\/2), is therefore given by 
Zl 

rzi = (iXF)1/'  . 
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RESONATOR AXIS 

Figure 3.   Path Difference A for Radius of r 
z 

In calculations the normalized radius, obtained by dividing the radius by the 

radius of the output mirror, is generally used.   This normalized radius is 

given by 

zi ■m'~ (iii-i) 

From the point F on the resonator axis, the incident field presents a 

phase difference of TT across each half-period zone.   This means, of course, 

that at F the fields resulting from adjacent zones tend to subtract and the fields 

resulting from alternate zones tend to add.   This effect is utilized in obtaining 

a focused output from the laser resonator.   Output focusing will be clearly 

illustrated in the following sections. 
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I 
B.   Uniform Illumination of the Zoned Mirror 

In Chapter II, equation (11-32), it was shown that the field at F 

could be written as 

1 
Ef(0. *f) = 2*j / rzMp exp (-J^R^r^r^  .     (m-2) 

The amplitude transmission coefficient is symmetric about the resonator, but 

in general it can vary radially.   However, the first case considered is that 

where T   is a constant function of mirror radius.   For uniform illumination of z 

the zoned mirror the illuminating function, R    [r V is constant; therefore, by 

setting the illuminating function equal to one, equation (III-2) becomes 

1 

I 
0 

x 
Ef(0,0f) = 2*jMpTz / exp (-j*Mprz

2)rzdrz  . <m-3) 

This integral can be written as the sum of the integrals across the half-period 

zones; that is, 

Ef(0'*f)= 27rjM] 
T 

P z 

zl z£ 1 

/      +/       + ••• + / 
Or. r zl 

(m-4) 

where the r    are given by equation (III-l) and rj is the greatest positive integer 
zi 

i that satisfies the relation 

r . ^ 1  . 
zi 

The change in variable from r   to x will now be made, where r   and x z z 

are related by 

x = M r l 

P z 
(III-5) 
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and 

a l 

M   = TF"   • p      \F (m-6) 

The x. corresponding to the r . given by equation (III—1) are therefore given by 

X    =   1    . (III-7) 

Thus, equation (III—4) can be written as 

-   ITjT 

1    . 2 
Je      dx +  j e      dx 
0 i 

M 

...♦/ e^dx (in-8) 

Performing the indicated integrations results in 

iH'N (.■* . i) + (e-i
2* . e"j7r) 

+ ...  + (e-lVr . 0-J <*-!>*) + (e"
JV . .-J*) 

This, of course, reduces to 

E 
/ -jM   7T\ 

:f(o,0f) = T^l-e     P  j 

(in-9) 

(111-10) 

If the output mirror consists of an integral number of zones, M   is an integer. 

Thus, the field at F is zero when there are an even number of zones on the out- 

put mirror, and it is equal to twice the transmission coefficient when there are 

an odd number of zones on the output mirror. 

An examination of equation (III—9) shows that the field at F due to con- 

tributions from adjacent zones on the mirror have opposite signs. Therefore, 

the intensity at F can be increased by removing alternate zones.   This is the 
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principle on which the Fresnel zone plate is based.' These zones can be 

removed by making T   equal to zero for alternate zones. z 

Consider the case where the output mirror has an even number of zones 

and the odd zones are removed.   It can be shown from equation (III-8) that the 

field at F would then be given by 

.(».♦i)-< =   TTJT / e-J7rXdx + jV
J"d* 

1 3 

M 

/ e'^dx 
-l 

(m-ii) 

This reduces to 

t(°'*f)- =  ~T   M z   p 
(in-12) 

The source field, the illuminating field on the zoned mirror, has a magnitude 

of one.   Thus, the amplitude of the field at F is (TM^ times as large as the 

field on the output mirror and the intensity at F is the square of ^M \ times 

as large as the intensity of the source.   For an integral number of zones on the 

output mirror it can readily be shown, via equations (in-1) and (III-6), that 

the number of zones is given by M .   Therefore, since the maximum value of 

T   is one, tLe maximum intensity at the focal point is equal to the square of 
z 

the number of half period zones on the output mirror. 

'Jenkins, Francis A., and Harvey E. White, Fundamentals of Optics, 
McGraw-Hill Book Company, Inc., p. 360 (1957). 
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A more physical interpretation can be obtained by relating the number 

of zones to the geometry.   This can be accomplished by substituting equation 

(III-6) into equation (111-12).   The result is 

=<«• *t)--(4-) (m-i3) 

The field at F is proportional to the area of the source field; this is indicated 

by the square of the mirror radius.   The field is also proportional to the 

amplitude of the source field; this is measured by the transmission coefficient. 

The decrease in amplitude with distance is expressed by the term U/r). 

Although achieved by diffraction phenomena, the increase in inx?nsity at 

F is due to a frwnising of the field transmitted through the output mirror.   To 

obtain this focused field the output mirror is considered to consist of half- 

period zones with only the alternate zones transmitting.   Since the fields trans- 

mitted through alternate zones add, the result is a maximum field at one point 

on the resonator axis.   This is the focal point of the zoned resonator. 

The development in this section assumed that the source field was uniform 

over the surface of the output mirror.   This can be approximated in practice 

only by resonators having very small Fresnel numbers.   A Gaussian distribu- 

tion is a more realistic resonator field configuration. 

C.    Gaussian Illumination of the Zoned Mirror 

The field at the focal point will now be determined for a source field 

having a Gaussian distribution.   This is begun by defining the field incident on 

the output mirror by 
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Rnz(rz) = exP ("brz2) • (nM4) 

where b is a real nonnegative constant.   By substituting this field distribution 

into equation (in-2), the field at the focal point can be written as 

1 
Ef(°'*f) = 27r*/T

z
MpexP (-^Mprz

2)exp (-br^d^  . (ffl-15) 

The radii of the half-period zones on the output mirror are defined by 

equation (III—1).   It is assumed that only alternate zones are transmitting. 

Thus, if the even-numbered zones are chosen to be the transmission zones, r z 

is finite over the even-numbered zones and zero over the odd-numbered zones. 

By using the change of variable indicated by equations (in-5) and (III-6), the 

field at the focal point can then be written as 

2        r    . .  .-. 4 

(°'*f) = ^z    { 6XP [•*(* + ^)jdX + / CXP ["*(* + W)\ 
M 

r /     h \i 
(111-16) C-R"^)} + ... +   J        exp |-x|j7r + Z7~) |dx 

P 

where for convenience it has been assumed that there are an even number of 

zones on the output mirror.   For a source field that does not change rapidly 

with r   and for large M , it is reasonable to approximate the value of the 

source field by a constant value over each zone.   Thus, if it is assumed that 

M   is large and that b « M , 
P P 

in the interval 

expf-xb/M J w exp [-ib/M \ 

1 s X S   (1 + 1)    . 
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Therefore, equation (111-16) can be approximated by 

Wr 

-b/M     2 -3b/M     4   , 
e        rJeJdx + e *j e J   dx 

-Im -IWM   M
P 

+ ... +eXF/       FJ       eJdx 
M -1 

P 

(111-17) 

By performing the indicated integrations and factoring out the term 

exp f-b/M V this equation can be reduced to 

Ef(°'*f)=K> 
-b/M / -2b/M \    / -2b/M \ 

M -2 
P 

+ ... +\ 
-2b/M \ 

- P/ 

(in-i8) 

The term in the brackets is a geometric series; therefore, when this series is 

summed, equation (III—13) becomes 

Ef(°'*f) =  (-2Tz) 

-b/M -b 
1 - e 

-2b/M 
1 - e 

(IÜ-19) 

By assumption, M   is much larger than b; therefore, 

exp (-WM\ * 1 - (b/Mp\ 

and 

exp (-2b/M )« 1 - (2b/M \   . 

When these approximations are used in equation (111-19) and the results are 

rearranged, it can be shown that equation (111-19) can be approximated by 

^■w^-^W- (111-20) 
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It is desirable to examine the focused field as function of both the num- 

ber of zones on the output mirror and the taper of the source field.   This will 

be done by considering a normalized form of the field at the focal point.   This 

normalized field is defined as the ratio of E (o, <j>,\ given by equation (111-20) 

to the field obtained with a uniform source field.   This reference field is given 

by equation (111-12), but it also can be obtained from equation (111-20) by taking 

the limit as b approaches zero.   In either case, the resulting normalized field 

is given by 

/n . \     (MP ' b\ -b/2 /sinhbM Ef(0,<M = i— ^ ]e   ' " l-wo     1   - (ni-21) 

In Figure 4 this normalized field is shown as a function of source field taper b 

for different values of half-period zones M . The field falls off fairly rapidly 

with increasing b and it falls oil slowly with decreasing M . 

D.   Optimization of the Transmission Zone Area 

The usual configuration for the zoned mirror is such that all the 

half-period zones occupy equal area.   For Gaussian illumination of the zoned 

mirror this configuration results in a maximum intensity at the focal point. 

However, it may be more desirable to maximize the intensity at the focal point 

per unit power out of the resonator; this would be a reasonable basis for 

optimizing the power transmitted out of the resonator.   If this basis is used for 

optimization, it is shown that the area of the transmission zones should be 

decreased.   This decrease in transmission area is used to increase the 

reflection area on the zoned mirror. 
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Figure 4,   Normalized Field at Focal Point as a Function 
of Source Field Taper 

It is assumed that the field on the output mirror has a Gaussian distri- 

bution of the form given by equation (III-14).   The inner radius of each trans- 

mission zone is held fixed, and the area of each transmission zone is varied by 

changing the outer radius of the zone.   It is assumed that the mirror has M 
MT 

half-period zones, that M   is even, and that the transmission zones begin at 

the beginning of the even-numbered half-period zones; these latter assumptions 

are for mathematical convenience.   They do not restrict the generality of the 

results. 

The width of the transmission zones is established by the following 

criteria.   If (ik/2) represents the path difference at the inner radius of a 
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transmission zone, then the path difference at the outer radius is given by 

[(i+6)x/2], where ö is a real parameter satisfying the relation 

0 £  ö £  2   , 

and where i = 1, 3, 5, ..., [M   - l\.   The remaining portions of the zoned 

mirror are reflecting zones. 

th 
The radius of the inner edge of the (i + 1)    transmission zone corre- 

sponds to the inner radius of the (i + 1)     half-period zone.   Therefore, from 

th 
equation (in-1), the inner radius of the (i + 1)     transmission zone is given by 

tff Tzi=l-hr\    . UII-22) 

and the radius to the outer edge is given by 

rz(i+6) 
(i + 6)XF 
 a~T~~ 

P 

^1 
(111-23) 

By defining A to be the area of this transmission zone, 

A, = ir(r2 ....   - r2.\   . 
t       y z(i+ö)       ziy 

Using equations (111-22) and (111-23) in this equation, the area can be 

expressed as 

m \ = l^^-\ . (IH-24) 

It is interesting to note that the area of this transmission zone is independent 

of the zone number; hence, the areas of all transmission zones are equal. 

By referring to equation (111-16), and by noting the differences on the 

limits of integration, it can easily be shown that the field at the focal point is 

given by 
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!,(«>.♦,) = W, 

l + ö. 
J     exp 
1 -f♦ ^) 

3+Ö 
dx + J    exp 

3 "f+ i) dx 

M -1+Ö 
. P 

..  + J exp 
M -1 

P 
-f * £) dx (111-25) 

It is assumed that M   is large and that b is much less than M ; therefore, 
P P 

exp (- (-xb/M \ » exp (-ib/M \ 

in the interval 

i ^ x ^  ( 

Thus, equation (III—25) can be evaluated in . .r to that used to 

evaluate equation (f 11-16).   The result is that the z«.       d field can be approxi- 

mated by 

Before proceeding, the assumption made previously that b « M  will be 

invoked and the term 
(

M
P "b) 

in equation (III-26) will be replaced by M 

The field at the focal point is then given by 

-J7TÖ /    , \     /     \A - e"iTj /    x -b/2/sinhb/2\ 
i^i) - rz)\——) (M

P)e  v-^72—; • (111-27) 

The intensity at the focal point is proportional to the square of the 

absolute value of the field at the:focal point.   Thus, by using equation (III—27) 

the intensity at the focal point is given by 

2 

If = 2CT 
/Mp\  -b/2/sinh_b/2\ (1 - cos TT6)   ,       (111-28) 

where C    is the constant of proportionality.   To emphasize the relation between 
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focused intensity and the area of the transmitting zones, a normalized form of 

the intensity is defined by 

T = 1 - cos 7T<5  . (111-29) 

In order to maximize the focused intensity per unit output power, an 

expression for output power must now be obtained.   From Chapter II, equation 

(11-17), this transmitted power is given as 

P^ ^ 271-C     f IT R    (r\ |2r dr 
T T J     z  nz\ z)     z    2 

(in-30) 

By using the source field as given by equation (III—14) and the radii of the 

transmission zones as defined by equations (111-22) and (111-23), the output 

power can be written as 

P_ = 2irC„ T 
T z 

z(l+6) z(3+<5) 
f exp |-2br 2

\T dr   + j exp (-2br 2}r dr 

zl z3 

rz(u -l+ö\ 

f    \   P '      / 2\ ...  + J exp^-2brz
2J 

rz(Mp-l) 

r dr 
z    z 

(111-31) 

By using the change of variable as indicated in equations (III—5) and (III—6), 

this equation can be expressed as 

Pm = 
T M 

1+Ö 3+6 
f    exp  f-2bx/M \dx +   f 

1 V p/ 3 
exp  /-2bx/M \dx 

M -1+6 
P 

+ ...  +   f exp /-2bx/M \ 
M -1 V P/ 

(111-32) 

Since b « M , P   is given approximately by 
XT ■*■ 
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,7rCTT,2\        -%>/Mn 
/ -4b/M \ 

I   -4b/M \2 / -4b/M \ 
\e Pj   +...  + ^e Pj 

M -2 
P 

This, of course, reduces to 

'ffC. 
PT = ¥H 

Finally, by using 

and 

exp {-2b/M \ « 1 

1 - exp (-4b/M ) M 4b/M    , 

equation (III-34) can be approximated by 

P„ =-^-TC„T 
z6e 

-b/sinhb 

)• 

(111-33) 

(HI-34) 

(111-35) 
T      2   "~T'z "~     \     b 

The intensity at the focal point per unit output power is obtainable from 

equations (111-28) and (111-35).   The result is 

®& 
feinh b/2\ 

b/2   ; 
(sinh_b\ 

b   / 

(1 - cos irö\ 
(111-36) 

The dependence of this ratio on the transmission zone parameter can be deter- 

mined from a normalized ratio defined by 

I   i \    (I - cos 7r6\ 
(111-37) 
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Both this equation and equation (111-29) are shown in Figure 5 as a function of 

the transmission zone parameter 6.   As w&s mentioned previously, the focused 

intensity is a maximum when the transmission zones correspond to alternate half- 

period zones; this condition occurs when Ö is equal to one.  On the other hand, to 

maximize the focused intensity per unit output power, each transmission zone area 

should be decreased to about 74 percent of the area of a half-period zones. 

One of the assumptions used in thi« development was that the dimensions 

of the output mirror be much greater than a wavelength.   This limitation was 

imposed so as to assure the dominance of aperture effects over edge effects. 

This constraint can be better specified by requiring a minimum zone width of 

at least ten wavelengths.   Since the minimum zone width and the maximum 

number of zones are related, this minimum zone width can be used to deter- 

mine the maximum number of zones that can be placed on a given mirror. 

To determine this relationship let M      be the maximum number of 
pm 

zones on the output mirror and assume that Ö is equal to one.   Thus, for an 

integral number of half-period zones on the output mirror, the width of the 

minimum zone is obtainable from equations (111-22) and (111-23) as 

Ar = 
M     \F pm 

T a 
P J 

Yi (M      - l) 
V pm       J 

\F h 

The term fa 2/\F j is equal to the number of half-period zones on the output 

mirror [equation (111-6)].   Therefore, 

Ar = 1 - 
\ pm / 

% 
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Figure 5.   Normalized Intensity at Focal Point as a Function 
of Transmission Zone Parameter 
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For M      large, pm 

12M      ) 
Ar M ( — 1  . (HI-38) 

The minimum zone width was fixed at ten wavelengths; however, in equations 

(111-22) and (JII-23), radii normalized to the radius of the mirror are used. 

Therefore, if this is taken into account, 

that is, the maximum number of zones that can be placed on the output mirror 

is approximately equal to the radius of the output mirror divided by twenty 

times the wavelength. 

The magnitude of the field at the focal point is proportional to the 

reciprocal of the focal distance; thus, focusing cannot be achieved at arbitrarily 

large distances.   The maximum focal distance is hereby defined to be the 

maximum distance such that the focal point intensity is ten times as large as 

the maximum intensity of the source field.   In all cases, the source field has 

a maximum magnitude of one.   Consider the case where the source field is 

uniform and the area of the transmission zones are equal to the area of the half- 

period zones.   The maximum focal distance F    can be obtained from equation 
m 

(111-13) by setting the focused field equal to N/TÖ!   The result is 

a V Fm =ift <m-40) 

For Gaussion illumination of the output mirror the maximum focal 

length will be less than that given by equation (111-40).   This can be seen by 
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referring to the expression for the field at the focal point for Gaussian illumina- 

tion of the output mirror, equation (in-20). 
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CHAPTER IV 

RESONATOR MODE ANALYSIS 

The numerical techniques used to determine the mode structure of the 

self-focusing resonator are discussed in this chapter.   In the first section 

the resonator equations are reduced to a matrix form.   Following this, the 

method used to find the fundamental resonator mode is presented.   In the last 

section the method used to determine higher-order resonator modes is 

presented. 

A.    Matrix Formulation 

The resonator equations are given in Chapter II, equations (II-3) 

and (II-4); they are repeated below for reference.   These equations relate the 

field at a point on one mirror to the integral of the field over the other mirror. 

On the output mirror the field is given by 

1 
R   ft \ = f P NK   fv ,r\R   /r\rdr (IV-1) nz\ z/     J   8     my z   a)   nsy s) s   s 

and the field on the input mirror is given by 

1 
R    (v \ =   (p NK   (r ,r\R    /r\rdr    . (IV-2) nsy aj     J   z     TC\ z   8)   nzy z) z    z 
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The field on the output mirror at a radial distance r    is given by 

X 

R    (r \ =  [p NK   (T ^r^R    (T \ 
TU\ zi/      J   a     m\ zi   a)  na\ a/ r dr 

s   s 
(IV-3) 

The field on the output mirror can be written in a sampled form as a 

column vector.   That is, 

nz\zO) 

[ui 
R nz N 
R nzl 

(IV-4) 

5(
rz(p-l)) 

In a similar manner, the field on the input mirror can be expressed as 

1 

U 
0 

R    A" A =  fP NK   /r ,r \R   /r\r dr    , na\ SJ/ «   z       m^ z     SJ/    BZ\ Z/   Z     Z 
(IV-5) 

and in a sampled form 

M] 

R   (r «\ nsl sOy 

R   frA ns^ sl^ 

(rv-6) 

ns(rs(p-l)j 

By utilizing a numerical integration scheme the integrals in equations 

(IV-3) and (IV-5) can be replaced by summations.   Then, if the sampling 

intervals are made equivalent to the integration intervals, the resonator equa- 

tions can be placed into a matrix form. 

By using Simpson's rule for integration, the resonator equation relating 

the field on the output mirror to the normalized field on the input mirror is 
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given by 

nz 

R 

- ¥ WU W [»] 
nz (rz(p-ljfl 

nsy sO/ 

ns\ siy 

R ns (rs(p-l)) 

(IV-7) 

where 

IK] = 

K   ft A,r \ 
K   fr A»r A m^ zO    SO/ m^ zO    slj 

Km(rzl'rso) Km(rzl'rsl) 

K 
m 

K 
m 

(rzO'rs(p-l)j 

(rzl'r8(p-l)) 

and 

Km(rz(p-l),rso)      Km(rz(p-l)'rsl)      •••K
m(rz(p-l)'rs(p-l) 

s(rso) °        - ° 

H- 
0 Ps(r8l)     ... 

»(rs(p-l))_ 

N 

r .      0      ...       o 
sO 

si 

s(p-l) 

[S] = 

10     0 

0     4     0...      0 

0     0     2...      0 

0     0     0...      1 
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Since the integration interval is the normalised radius of unit length, the incre- 

mental interval, h, is equal to |l/(p-l)] , where (p) is the number of sample 

points. 

In a similar manner the field on the input mirror 1B related to the field 

on the output mirror by 

where 

and 

R    (r n\ na\ so; 

ns^ si/ 

ns(rs(p-l)j 

-"MH ['.][•] 

nz ^ zQ) 

nzl zli 

H 

W 
-w 

R 
nz 

0 

0 

(rz(p-l)) 

•     P. :(rz(p-l)) 

['.] 

r n ° zO 

0       r zl 

0 0       ...   (r \ 
\ z(P-l)J 

In order to reduce the amount of notation, 

(IV-8) 

(IV-9) 
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and 

are defined.   If these equations are used in equations (IV-7) and (IV-8) and 

the column matrices are written in reduced forms, the resonator equations 

can be written 

["*«]  "  [A
6] [**.«] (1V-U> 

and 

[R
M(rs)H\][fi

M(rz)]   • (IV-12> 
The unnormaiized fields are related to the normalized fields by the 

complex constants v     and y    ; that is, 
nz ns 

["»«] ° UM',)] ,Iy"13) 

and 

[Rns(r„)] ■ ».[**«]   • (IY-U) 

As was mentioned in Chapter II, tksse complex constants represent the value of 

the unnormaiized fields at the radii where the field amplitudes are maximum. 

Thus, the normalized fields have a maximum magnitude of one. 

Substitution of equation (IV-13) into (IV-11) and equation (IV-14) into 

;rv-12) leads directly to 

Y nz 

and 

Tns 
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These equations represent the matrix formulation of the resonator equations. 

To reiterate, these equations relate the field on one mirror of the resonator 

to the field on the other.   Through p (r \ aad f» Ir J the reflectivity of the 

mirrors can be made to vary as a function of mirror radius.   This feature is 

necessary for expressing the selective reflection characteristics of the zoned 

mirror.   In the above development Simpson's rule was used; however, other 

numerical integration techniques have been considered and they lead to results 

which can be expressed in the form given by equations (IV-15) and (IV-16). 

By combining equations (IV-15) and (IV-16) the resonator problem can 

be put into the form of the eigenvalue problem. To show this, equation (IV-15) 

is substituted first into equation (IV-16) and 

v».[s»«] - N [*.] pWrs)]        <tv-17> 
is obtained.   With the opposite substitution, 

v  y   , ns nzi I5„z(rz)j ■ [\] N P*M] •       <IV-18> 
By defining 

Y  V    = r ns nz        n 

N N ■ W 
and 

M N ■ M 
and by using them in equations (IV-17) and (IV-18), it is seen, after some 

rearranging, 

[»»-■vlP«.«]-0 <IV"19, 
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and 

[»« " V] [M'*)] = ° ' (IV-20) 

where I's the (p) order identity matrix. 

B.    Fundamental Mode Analysis 

A form nf the power method was used to determine the fundamental 

rr.odes of the self-focusing resonator.   The power method is a numerical pro- 

cedure that can be used to solve eigenvalue problems whose operating matrices 

are well behaved.   By well behaved it is meant that the matrix does not have 

degenerate eigenvalues or eigenvalues having the same magnitude but different 

phases. 

Mode losses are determined by the magnitude of the eigenvalues; thus, 

different values of eigenvalues mean that the modes have different losses.   For 

a given angular degeneracy, the power method extracts the mode having the 

least loss.   This mode is called the fundamental mode. 

Basically, the power method of mode analysis is an iterative technique 

whereby an initial estimate of the field is operated upon by the resonator 

matrix until the field converges to a mode of the resonator.   Convergence 

means that in a double pass the normalized field repeats itself.   That is, the 

normalized field after one douple pass is identical to the original field; hence, 

the field distribution is a solution to one of the resonator equations. 

According to equations (IV-19) and (IV-20), the resonator equations 

can be written in a matrix format in terms of the field on the input mirror as 
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rn[R„S(
r

3)]  " [\s] [RM(g] "V"22' 

and in terms of the field on the output mirror as 

!'„[H„z(
rs)] - [»«][*«W] • ("-23) 

Solutions to these equations represent the modes of the resonator.   Since the 

fields on the two mirrors are related by equations (IV-15) and (FV-16), it is 

necessary only to solve for the field on one mirror.   The other field would be 

obtainable from equations (IV-15) or (IV-16). 

The initial estimate of the field is called the zeroth iteration.   Thus, by 

working with tne fields on the input mirror and by denoting the iteration by a 

superscript, the initial field distribution is written as   R°   /r\ .   On each 

iteration the field is operated on by the resonator matrix.   This operation 

represent   a double pass of the wave in the resonator.   After each iteration the 

field is normalized by dividing it by the value of the field where the magnitude 

of the field is a maximum.   This normalized field is then used as the input for 

the next iteration and the process is repeated. 

th This iteration procedure from the first to the k    iteration is outlined 

by the fallowing equations: 

[»>.)]-[»»IP*..«] <jv-241 

[»i.w]-[BJ[*i.w] (iv-25) 

K(r*)]= N [sUr
s)j 

(iv-26) 

[ ns(rs)J   ~  [ zsj |_  ns (rs)J (IV-27) 
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The unnormalized and normalized fields are related by 

[■LM] ■ rK*(v,] • (iy-28) 

where i = 1, 2, ..., k, and T   is the value of  R    (r \ where its magnitude 

is a maximum.   It is essential to note that if  R    (r \   is a mode of the 

resonator, that is, a solution to equation (IV-22), then r   is the corresponding 

eigenvalue for that mode.   If  R    (v \ I is not a resonator mode then F  is not 

an eigenvalue, but merely a complex constant used to normalize the field. 

th 
By using the above equations, the normalized field at the k    iteration 

can be expressed in terms of the initial field as 

Kif.il- (W—?) [B-]kf,-w] •    <IV■29, 

It has been shown that in the limit as k —- «> the k distribution is independent 

of the initial distribution.l Because of this, there is some liberty in choosing' 

the form of the initial field. 

To keep the results relatively general, suppose that the initial field is 

composed of all possible modes for a given angular degeneracy.   The initial 

field can therefore be written as 

pi.«] - | *[%?*)] •       <iv-3o) 

where the a. are finite, complex constants.   The resonator matrix is of order 

(p) and therefore has (p) solutions.   These solutions are represented by the 

1 Hildebrand, F, B., Methods of Applied Mathematics, Prentice-Hall, 
Inc., p. 427 (1952). 
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field distributions fit   (r \1.   It will be assumed that these fields are ordered 

in relation to their eigenvalues such that 

ir.i > TV. I (rv-31) 

where J * 0, 1, ..., (p - 2). 

Substituting equation (IV-30) into equation   IV-29) results in 

Taking the operator matrix inside the summation gives 

\ n n *"    n/ *~ 
(IV-33) 

If one uses the knowledge that the   R. /r \| are solutions to equation (IV-22), 

it can be observed that operating with IB   1 on  R   |r \ I is equivalent to 

multiplying the field by its eigenvalue; therefore, (IV-33) can be written as 

few] ■ faM&Gfkwa •<iv- 
\ n n '"    n/J 

From equation (IV-31) it is obvious that for large k, the j = 0 term will 

dominate.   Therefore, the'field on the k    iteration, for large k, is given by 

Ks(ra)J = L/ , A(ro)k[Rflg(rg)] , (IV-35) 
n n n 

,i    „2 -k and since r , r , ... T , a0, and r0 are constants it follows that 
n     n n    u u 

[fiL(rs)] - Kw] • ,iv-36) 

This heuristic development has led to the important resuH that the field distri- 

bution obtained by the power method is the dominant mode of the resonator. 
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I 

This mode represents the field distribution which experiences the least double 

pass loss. 

If an initial field is chosen that has no component of \H    /r \ 1 one 

might be tempted to assume that the final field would be  R   (r ) j •   This 

would not be true; the final field is independent of the initial field.   This can be 

visualized in a practical sense by noting that although the sampling process 

can be made accurate to any degree, it is not exact.   Therefore, it is 

impossible to start with an initial field that is exactly a pure mode, and it can 

be assumed that because of this inexactness, the initial field contains at least 

a small portion of the dominant mode.   This way of looking at the initial field 

distribution is analogous to a laser resonator having an initial field generated 

by the spontaneous emission.   The probability of the spontaneous emission not 

having a component of the dominant field is inconceivably small. 

As was noted previously, the power method results in the field con- 

verging to a configuration independent of the initial field distribution.   Hence, 

the field at any iteration can be considered to be independent of the final field; 

and therefore convergence depends on the accuracy of the resonator matrix 

and not the initial field.   On every iteration the field is operated on by the same 

resonator matrix.   Thiss matrix acts as a reference to which the field is con- 

tinually compared.   Convergence occurs when the normalized field reproduces 

itself from one iteration to the next. 

This concept of convergence can be formalized in the following manner. 

By referring to equation (IV-34), the field is said to be converged if 
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lRk fr\- Rk_1fr \ I < A « 1 
nsV a)        ns V s/ 

for all values of r .   This means that the field has converged when the maxi- 
s 

mum difference of the field from one iteration to the next is less than A.   This 

converged field represents a pure mode of the resonator model to within an 

accuracy given by A.   Values of A used in this study varied from 10~T to 10"4. 

It is important to realize that convergence to a given degree does not 

imply that the resulting field has the same degree of accuracy.   Convergence 

in itself is a measure of the stability of the numerical model. 

Consider the accuracy with which a mode obtained with the numerical 

model represents an actual resonator mode.   This is a measure of the accuracy 

with which the numerical model represents the integral equations.   A method 

described by Scarborough2 was used to determine this accuracy.   Tc measure 

the accuracy cf a given result a second solution is obtained by using twice the 

number of sample points.   The error in the first solution then has a magnitude 

of approximately (16/15) times the difference in the two solutions.   In this 

study it was found that the resonator modes were obtained to within an accuracy 

of about one percent. 

The iterating procedure given above results in the field being calculated 

on every double pass.   However, it is sometimes advantageous to calculate the 

field on every pass.   This single pass power method makes usa of the form of 

the resonator equations as given by equations (IV-11) and (IV-12). 

Scarborough, J. B., Numerical Mathematical Analysis, Fourth Edition, 
The Johns Hopkins Press, pp. 178-179 (1958). 
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For the single pass method an initial field distribution is assumed, say 

j R°   ft \ 1.   This is used in equation (IV-11) and the field on the output mirror 

is calculated.   This f'ild is normalized and substituted into equation (IV-12). 

Normalizing the field obtained with this equation gives! R1   |r\ .   This field is 

substituted bac k into equation (IV-11).   This procedure is continued until the 

[-k        1 
R    (r \ .   An examination of the pertinent equations will 

show that this field is identical to that obtained with the double pass method. 

Although the results are identical, there are differences in the computa- 

tional times.   It is because of this difference that one method might be pref- 

erable over the other.   For both methods, each iteration involves the multipli- 

th cation of a p-term column matrix by a (p)     order matrix.   These operations 

will be denoted by P .   For the double pass method (k) iterations are required 

for convergence, and for the single pass method (2k) iterations are required; 

therefore, the single pass iterating procedure requires kP  more operations. 

However, the operating matrix for the double pass method, obtained by mul- 

tiplying the two (p)    order operating matrices ("A "I and [A 1 together, 

requires pP   computations.   Therefore, if (k/p) < 1 it would require fewer p 

total operations to use the single pass power method, and if (k/p) > 1 the 

double pass power method would require fewer operations. 

In the procedure used above, the basic power method was modified 

merely by using a different form for the resonator matrix.   In doing so it was 

found that under certain conditions computational time could be reduced.   With 

the goal in mind of minimizing computational time, another modification of the 

operating matrix will be developed. 
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Consider the form of the power method as expressed by equation (IV-29). 

This equation can be rewritten as 

[*>,)] - ^rn*)[[»jj\w (IV-37) 

where (k) represents the number of iterations required for convergence and (j) 

is an integral submultiple of (k).   This immediately suggests the possibility of 

using   [B   1    as the operating matrix and iterating (k/j) times.   Each itera- 

tion would then be equivalent to (j) double passes in the resonator; hence, 

(k/j) iterations would be equivalent to (k) double passes.   For some resonators 

this modified power method offers the advantage of decreased computational 

time. 

Each iteration involves the multiplication of a p-term column matrix by 

a (p) order matrix. As before, these operations are denoted by P . There- 

fore, there are a total of (k/j) P   operations involved in this iterating process. 

The number of computational operations required to generate the oper-" 

ating matrix from ]B   1 can also be related to P .   If the values of (k) and (j) 

are limited in such a way that j = 2 , where (h) is an integer, the method of 

multiple squaring can be used to calculate the operating matrix.   In this method 

fe   "I is squared, the result is then squared, etc., until MB   ]     is obtained. 

Each squaring operation is equivalent to multiplying a (p)     order matri. times 

th 
a (p)     order matrix; therefore, each squaring requires pP   computations; and 

since (h) squaring operations are required, a total of hpP   computations are 
P 

needed to generate the operating matrix. 

the operating matrix. 
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The practical limitations resulting from the constraints placed on (k) 

and (j) are not as severe as one might imagine.   This is because (k) cannot 

be accurately predetermined, and to assure a high, probability of convergence 

(k) is usually estimated somewhat high.   Therefore, since (k) is only approxi- 

mately correct, little is lost by using the permissible value of (k) nearest to 

that estimated. 

The computations required for normalizing the field, for cases where 

p > 10, are small compared to P .   Since these are the cases of interest, the 
Mr 

computations required for normalizing the field will be neglected.   Therefore, 

the total number of calculations, T, will be approximated by the sum of those 

required for iterating and those required for generating the resonator matrix; 

that is, 

-(TH1 T -l-T <" hpjP     . (IV-38) 

Since it is desirable to minimize the number of calculations, (h) is 

temporarily assumed to be continuous and T is differentiated with respect to 

(h).   Setting the result equal to zero and simplifying gives 

(k/p) = (2h/ln 2)  . (IV-39) 

This ratio, (k/p), is shown as a function of (h) by the dashed curve in 

Figure 6.   However, (h) can take only 'r.tegral values, and therefore this 

curve is only correct for these integers.   For values of (k/p) that give an (h) 

between the integers (h.\ and (h. + l\, equation (IV-38) must be examined to 

determine which of these integers results in minimum T.   This can be done by 

equating T(h \ and T(h. + 1), where 
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ft) • {—.+ \A <IV-40) 

and 

T(hi+1)=^l+(hi + 1)p) P    , (IV-41) 
P 

and solving for the corresponding value of (k/p).   This gives 

h.+l 
(k/p) = 21      . (IV-42) 

The value of (k/p). as given by equation (IV-42), represents the cutoff 

between (h.) and (h. + 1\.   That is, one would use an (h) of value (h.\ for 

values of (k/p) such that 

h h+1 
2     s  (k/p)  £ 2 . 

This is indicated bj the stairstep curve in Figure 6. 

A measure of the computational time saved by using this modified power 

method can be obtained by comparing the number of computations required for 

this method to that required for the double pass power method.   For the double 

pass power method, (j) is equal to one, and therefore (h) is zero.   Using this 

in equation (IV-38) gives the number of computation; as kP .   The ratio of the 
P 

number of computations required for the power method to that required for the 

modified power method is given b / 

T(h = 0) _      (k/p)2h 

T(h)       " (k/p) + h2h   ' 
(IV-43) 
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The (k/p) obtained from this equation is shown as a function of T(h = 0)/T(h) 

in Figure 7.   Thus, if an estimate of (k/p) is known, an estimate of the 

advantage gained by using the modified power method can be obtained.   For 

instance, if (k/p) is ten, approximately twice as many calculations are needed 

for the power method as are needed for the modified power method.   To sum- 

marize, for (k/p) s 1 the single pass power method requires the fewest com- 

putations, for 1 s (k/p) ^ 2 the double pass power method requires the 

fewest computations, and for (k/p) > 2 the modified power method requires 

the fewest computations. 

C.   Higher-Order Mode Analysis 

The method used to obtain higher-order modes is based on a tech- 

nique suggested by We Is.3 It is a mathematical operation whereby the nor- 

mally dominant mode is suppressed in such a way that the next order mode 

becomes dominant.   The process can be extended to higher-order modes. 

This technique requires that the field distribution be operated on with 

the matrix operator [J ], where 

[J] =  [Bzs] - rsII]   • (IV"44) 

The term [B   ] is the resonator matrix, r   is the eigenvalue of the mode 

being suppressed, and [I] is the identity matrix. 

3Wells, W. F , IEEE J. Quantum Electronics, Volume QE-2, 
pp. 94-102 (1966). 
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Figure 7.   Ratio of Iterations to Matrix Order as a Function 
of the Number of Computations 
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Rfl^V S'W',11   ««-.  - ».T»-f!^rwiwiw*wyr*w^-i--™: 

To illustrate how this operation suppresses a given node, the most 

general form of the initial distribution will be assumed.   As before, this means 

that the initial distribution is represented by a sum of all possible modes.   For 

th 
the p    order resonator matrix this is written as 

[fiUrs)]=!0
aj[Vr

s)] • «v-45) 

where the a. are finite.   Assuming further that the mode being suppressed is the 

zeroth order, the initial field is tnen operated on by [J]; this gives 

'-»[*..?.)] ■ [»-]|Sfc.(r.>] - r°|/j[vrs)] • 
(IV-46) 

Operating with the resonator matrix on a resonator mode is equivalent to mul- 

tiplying that mode by its eigenvalue.   Thus, equation (IV-46) can be written 

as 

w K?*)]'- % VilV*)] - r'!ai[sjs(rs)] •  ,IV-47, 

When the summations on the right-hand side are combined, the lowest-ordered 

mode subtracts out.   The result is 

'" [BUr
s)] ■ % aj(rj -r«) [W] ■     (IV-48) 

This field is normalized to a peak magnitude of one and then used in place of 

I R°   (r \ 1 as the input field for the iteration.   The resulting normalized field 

can be expressed by 
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1 

"» W [5Urs)] ■ g ta) (r) - r«) [fiJ.(r.)] •       (IV-48> 

where (b) represents the normalization constant.   Therefore, by defining 

<b)l>l[5™(rB)] = ^C)[fiJ.(r-)]- ,,V-50, 

Comparing the right-hand sides of equations (IV-50) and (IV-45) shows 

that they are similar except that in (IV-50) the lowest-order mode has been 

completely suppressed.   Thus, applying the power method to the field given by 

equation (IV-50) will result, at least conceptually, of R    (r \1 dominating. 

That is, after k iterations, the   R    (r ) I fie^d wil1 dominate over the high 

ordered modes.   The field after k iterations is given by 

zner- 

ICJr.M-f '       ..IE  CJrX\RjT\\   ,       (IV-51) 
\ n n        n/* 

where T  is the normalization constant after the i    iteration and (r.\   is the n V j/ 
th th eigenvalue of the j    mode raised to the k   power.   Thus, for sufficiently 

large k and finite Clt 

!c1<r1>ki » ic7rAki , (iv-52) 

for j = 2, 3, ..., (p - 1), and equation (IV-51) becomes 

k 

\  n n"'    n / 

(IV-53) 

Since Clf Tu andrer2, ..., r   are constants, 1     l n    n n 
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[■Lw]= [«i.(r.)] ■ (iv-64» 
The implementation of this mode suppression technique is not as 

straightforward as the above example indicates.   This is because the lowest- 

order mode cannot be exactly suppressed.   Inexactness in the value of T 
0 

results in the field containing a portion of the mode being suppressed.   There- 

fore, even though it is small, the magnitude of this mode increases with every 

iteration with respect to the higher-ordered modes.   If the field is iterated 

sufficiently the lowest-order mode will dominate. 

The immediate conclusion is that the mode suppression operation should 

be applied more than once.   However, if it is applied too often the resulting 

field distribution may not be that of the desired mode.   This is because 

application of the suppression operation may result in higher-order modes 

increasing in magnitude relative to the mode being extracted. 

The lack of accuracy in the eigenvalue of the mode being suppressed 

can be denoted by substituting f r   + AJ for V , where A represents a measure 

of this inaccuracy.   In making this substitution it can be shown that every 

application of the suppression operation is equivalent to multiplying the j 

mode by (r. - r   - Al.   As was mentioned previously, each iteration is 

equivalent to multiplying the j    mode by its eigenvalue.   mherefore, if the 

zeroth order mode is being suppressed, and the initial field is tha given by 

equation (IV-45), the field after (u) suppressions and (k) iterations will be 

proportional to 
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Thus, for the j = 1 mode to dominate the following condition must hold: 

^l^- r0-AI^ lirji)    (a,I • (IV-56) 

where j - 0, 2, 3, ..., (p - 1). 

st 
From (IV-56) it is seen that the relative magnitude of the 1    mode to 

,th 
the j    mode changes by a factor of 

rv- r„ - A 
r^ - r0 - A 

for each application of the 

suppression operation.   As has been stated previously, the eigenvalues are 

assumed to be ordered such that 

lr0i > irj > ir2i > ... > ir (IV-57) 

Thus, it is reasonable to expect that for some cases lr01 »   Ir. I.   If the con- 
j 

dition also exists that |A| «   |rt - r0|, then 

/irt - r„ - A\    I T\ 
^-TO-AIJ   |r0 

- l (IV-58) 

This means that whenever 

<   1    . 

it is possible that the suppression of the zeroth mode results in the j ^ 2 mode 

increasing relative to the j = 1 mode. 

Consider now equation (IV-56) for the case j - 0.   For each application 

of the suppression operation, the ratio of the j = 1 mode to the j = 0 mode is 

r, - r0 - A multiplied by ; therefore, for the ratio of these modes to 

increase, it must be that 
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IAI < ir, - r0 - Al . (iv-59) 

Simpler but more stringent requirements can be placed on IA | by noting that 

ir, - r, - Al * ir, - IAI 

and that if 

IAI < ir, - rci - iAl, 

the inequality in (IV-59) is satisfied.   Therefore, reducing thir» last inequality 

gives 

IAI < 2 ir, - r0i (IV-60) 

This inequality expresses a sufficient condition on A such that each application 

of the suppression operation will result in the j = 1 mode increasing relative 

to the j = 0 mode. 

It is apparent that both mode suppression and iteration operations are 

necessary for the j = 1 mode to dominate.   Consider the inequality expressed 

in (IV-56); in particular consider the j = 0 mode, j = 1 mode, and j as 2 mode 

Obviously, for the j = 1 mode to dominate over the j = 0 mode one must have 

k r4 - rfl - A 
» 

ai 
(IV-61) 

and for it to dominate over the j - 2 mode one must have 

r, - r„ - A 
rrr0-A 

11 k a 
I'l 1 » 
lj 

ai 
(IV-62) 

More strict requirements are 

/irt - r0i - lAi^lrJ 
\        IAI        /   r0 

» 
aQ 

ai 
(IV-63) 
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and 

/irt - r0i - !AI\
U
 rt 

^ir - r0i + |A! 1  r. r. 
j 

k 
» 

a 
J 

ai 
(IV-64) 

These requirements are somewhat more amenable to evaluation than (IV-61) 

and (IV-62). 

It is assumed that A is given by 

lAI-^llW.I (IV-65) 

For most cases of interest this should be an easily obtainable accuracy. 

From equation (IV- 57) one can obtain 

1 > 

and 

1 > 

Therefore, it is assumed that 

Ti rj 
rT 

> 
r. 

> 
To 

r. 
) « 

r0 

As it is expected that* 

r. 
j < 

(IV-66) 

*For a symmetrical resonator having a Fresnel number of one and 
plane, circular mirrors, the eigenvalues of the various modes were examined 
in some detail.   It was found that the magnitudes of these eigenvalues obeyed 

r 
n+2 

< 
r«l 

rn+l 
r n 

the inequality 

degeneracies of 0, 1, 2, or 3. 

for a = 0, 1, 2, 3, 4 and for angular 
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using (IV-66) in (IV-64) should increase the convergence requirements. 

For convenience it is assumed that all the modes are present in the 

initial field wi h equal magnitudes; that is, 

iao! =  laj =  |a2| = ...   . (IV-67) 

With experience, the initial field can usually be chosen so that the magnitude 

of the j = 1 mode is greater than the magnitude of any other mode. 

It is also assumed that 

ir. - r0i» II\ - r0i . (IV-68) 

For resonators with small Fivsnel numbers this assumption should be reason- 

able; however, it must be granved that (IV-68) is vory approximate. 

By using the above in equations (IV-63) and tIV-64), 

k 
(99) 

u » l (IV-69) 

and 

(0.98) r, » 1 (IV-70) 

are obtained.   If convergence is aifected equally by the j = 0 mode and the 

j > 2 mode, then the left-hand sides of equations (IV-69) and (IV-70) can be 

equated.   From this one can obtain 

rn (k/u) « (2. 3)/in (IV-71) 

This relates the number of iteration operations per number of suppression 

operations required for convergence to the j = 1 mode.   A plot of this expres- 
p 

sion is given in Figure 8.   The ratio  - - varies in some inverse manner to 

the resonator Fresnel number; for large Fresnel numbers the ratio approaches 
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Figure 8.   Ratio of Iterations to Suppression Operations as a Function 
of Eigenvalue Ratio 
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one and for small Fresnel numbers it is much larger than one.   Thus, for 

resonators having large Fresnel numbers <k/u) should be large and vice versa. 

It should be noted that the more accurate r0 is known, the larger the 

ratio of (k/u) can be used.   In practical terüui this means that the total number 

of suppression operations can be reduced.   However, a word of caution is in 

order:  The computational time saved in reducing the number of suppression 

operations may be less than that required to obtain r0 to a greater accuracy. 
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: 

CHAPTER V 

TRANSVERSE MODE CONTROL 

For optimum operation of the self-focusing laser the resonator must 

oscillate in a tingle transverse mode.   Although focusing can be achieved with 

higher-order modes, it has been found that the best results are obtained when 

the laser oscillates in the TEM00 mode.   This mode has the field configuration 

which must closely approximate the desired uniform field.   In the usual plane 

parallel resonator the TEM00 mode is the dominant mode; however, this study 

has shown that the selective reflection characteristics of the zoned mirror may 

change the order of the mode losses.   In this case a higher-order mode 

becomes dominant, and mode control is then necessary. 

The usual technique for transverse mode control is based on the fact 

that diffraction losses are different for different order modes.   Mode control 

is achieved by placing apertures in the resonator in such a way that undesired 

modes experience losses greater than those of the desired mode.   These aper- 

tures decrease the beam cross section; and since the zoned mirror of the self- 

focusing resonator should have a large radiating area, this method of mode 

control is not desirable. 

In this chapter another method of transverse mode control is considered. 

It is based on a principle of mode enhancement:  Losses of the desired moda 
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are reduced by introducing a field distribution, identical to the desired mode, 

into the laser resonator.   This has the effect of reducing the net loss of the 

desired mode; and if its loss is reduced beyond that of all other modes, this 

desired mode will dominate. 

This mode enhancement technique is based on the mode switching work 

of Johnston, et al.,l who experimentally demonstrated that the transverse 

mode structure of one laser could be switched to another mode by coupling 

radiation into the resonator from a second laser.   Based on their results that 

the transverse mode structure of one laser could be controlled by another 

laser, a computer model was developed to simulate the coupling of radiation 

from one laser into another.   This model was then used to evaluate the 

effectiveness of uning mode enhancement for transverse mode control. 

A block diagram of the physical arrangement for mode enhancement is 

shown in Figure 9.   The control laser is operated in the desired transverse 

mode.   The radiation out of the control laser is directed through an optical 

isolator and mode matching optics into the output laser.   Both of the lasers are 

oscillators; hence, the isolator is necessary to assure- that the control laser 

operates on the output laser and not vice versa.   The mode matching optics 

transform the mode structure of the control laser to that of the output laser. 

It should be noted that the two oscillators must be operated within the same 

laser line. 

'Johnston, W. D., Jr., Tingye Li, and P. W. Smith, Journal of 
Quantum Electronics, Volume QE-4, pp. 469-471 (1968). 
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Figure 9.   Block Diagram of Mode Enhancement System 

The numerical model used to represent this physical system is an 

idealization of the actual physical processes involved.   First a given resonator 

is described by the resonator equations; this represents the output oscillator. 

Two modes of this resonator are then determined, the dominant mode and a 

higher loss mode.   The field configuration of the higher loss mode is used as 

the input from the control laser.   The model was used to determine the system 

constraints required to force the output resonator to oscillate in the higher loss 

mode. 

To understand the model, the iterating process described in the pre- 

ceding chapter needs to be briefly reviewed.   The iteration process represents 

a wave traveling back and forth in the resonator.   At each mirror the wave 

experiences both diffraction and transmission losses.   On each iteration the 

field is normalized to a magnitude of one; therefore, the normalization repre- 

sents a constant gain.   If the initial field is composed of many modes, then 

after many passes through the resonator the mode having the least loss 

dominates. 

The enhancement model differs only slightly from this iteration pro- 

cess.   The difference is that each time the field is on the input mirror an 

input field is added to the resonator field, and the summed field is then used as 

the source field in the iteration process.   This input field represents the 
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radiation from the control oscillator and it has the field configuration of a 

mode of the output resonator.   Thus, the input field can be viewed as a selec- 

tive gain mechanism; it continually adds a pure mode to the field within the 

output resonator.   If this increase in gain more than makes up for the greater 

resonator losses, the input field will become dominant. 

The processes involved in the numerical model are as follows: 

(1) The dominant mode of the output resonator is determined.   It is 

designated the TEM     mode; its normalised field on the input 
mn 

mirror is given by   R    tr \ . 

(2) One of the higher loss modes of the output resonator is determined. 

It is designated the TEM      mode; its normalized field is given by 

R    (r V.   This field is used as the source field from the control 
L ncv s/j 

resonator.   To allow for changes in magnitude of the input, it is 

assumed that the control field transmitted into the output resonator 

is given by |T R   /r \ |, where T  is a real nennegative constant. 

(3) An initial distribution is assumed in the output resonator; to this 

is added the input from the control resonator, | T R    (r \\. 
I s nc\ s/J 

(4) The following iterative procedure is then used: 

(a) The field resulting from a double pass through the resonator is 

calculated. 

(b) This field is phase normalized and ] T R    /r \| is added. 

(c) This summed field i? normalized to a peak magnitude of one. 

(d) From step (c) go to step (a).   This procedure is continued 



until the normalized field in tke output resonator converges to 

a fixed value. 

The field on the input mirror is designated as IP   (r \ J.    As was done 

in Chapter IV, the field on the output mirror, I R    (r \ , can be related to this 

field by 

[B«t\)] ■ N P«W]   • <V-" 
and the field reflected back to the input mirror, in terms of the field on the 

output mirror, is given by 

(>('„)] - N pWrz)] • <v-2> 
The terms [A 1 and JA 1 are the single pass resonator matrices defined by 

equations (IV-9) and (IV-10),   The bars over the fields represent the usual 

normalizations obtained by dividing the fields by their value at maximum 

magnitude. 

The field on the input mirror is obtained by adding the field transmitted 

from the control resonator to the phase normalized reflected field.   This 

phase normalization is necessary as the resonator equations do not preserve 

the absolute pha^e of the fields.   The field on the input mirror is given by 

TP   (T \1 = [T R  (r Yl + lr  y   I fa   (* VI •        (V-3) [ nsV s/J      L s csV s^J        'ns nz [ ns^, sjj 

The terms y    and y     are the complex constants obtained in normalizing 

|R    /r \1 and [R    (r \1 respectively.   As shown by the resonator equations, if 

|P    (r \j represents a field on the input mirror, the field after a double pass is 

given by [A "ITA 1 times [p    (r \1.   From equations (V-l) and (V-2)   it can 

be shown that 
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Therefore, comparing this to the second term on the right-hand side of 

equation (V-3) the effect of the phase normalization is apparent; the phase 

normalization allows the system to reach a steady state where the two compo- 

nents of the field on the input mirror have a fixed relationship. 

Equations (V-l), (V-2), and (V-3) represent the characteristics of 

the mode enhancement system.   These equations relate the fields at the 

mirrors of the output resonator in terms of the resonator characteristics and 

the input field from the control resonator.   The equations were programmed 

for use on an IBM 7094 computer in the iterative format given above.   The 

resulting computer model represents an oscillating resonator being injected 

with a constant field from another resonator.   The model was set up so that 

the initial field, resonator characteristics, and the rate that the input signal 

was injected into the resonator could be varied. 

Before some of the results obtained with model are presented, a 

simplified steaa.> -state analysis will be given. 

First, it will be assumed that a steady- itate exists; by this it is meant 

that the normalized resonator field repeats itself after a double pass through 

the resonator.   Since the model is linear it is reasonable to expect that the 

steady-state field is a linear combination of the input field and the normally 

dominant resonator field.   Thus, the normalized, steady-state field on the 

input mirror can be expressed as 

P    (r \ = a R    (r U a R    (r \   , (V-4) nsV, s^       n nsv s/       c nc\ s^ 
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where a  and a  are complex constants, and where II   /r \ is the normally 

dominant field of the resonator and R   (r \ is the input field from the control 

resonator.   Both fields arc pure modes; therefore, a double pass through the 

resonator is equivalent to multiplying the fields by their eigenvalues.   Thus, 

after a double pass through the resonator the field is given by 

a r R    fiUal'B   [r\, (V-5) 
n n ns\ a)       c c nc\ &) 

where r   and r   are the eigenvalues of R   (r\ and R   (r \, respectively. 

To satisfy the condition of a fixed phase relation between the input field 

and the resonator field the phase is normalized.   This is accomplished by 

multiplying (V-5) by (IA |/A), where A is the value of (V-5) where its magni- 

tude is maximum.   The result is 

i~ [a r R    (T \ + a T R    (r \\   . (V-6) 
A   j_ n n ns\ s)       c  c ncV s/J 

This represents the phase normalized form of P    (r \ after a double pass 

through the resonator.   To this field is added the input field, T R    (r\, and 
S    DC \  S / 

flAla r ] [|A|a r   + 

l-r%C.)+ [-^r 
if obtained. 

T A 
s 

R    (T \ 
ncV s^ 

(V-7) 

Gain is expressed by normalizing (V-7) so that the peak field has a 

magnitude of one.   This is done by dividing (V-7) by B, where B is the value of 

(V-7) where its magnitude is maximum.   By assumption, steady conditions 

exist; therefore, after this last normalization the field is identical to the initial 

field. Thus, 
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flAla r 1 flAla r   + T A] 
p

M(r,) ■ I-äPKW 
+ [ C

AB 
sK(rs) •<v-» 

Equating coefficients of the fields inequations (V-4) and (V-8) results 

B = Jdl T (V-9) 
A      n 

and 

\ " AB-'iAir   • (V-10) 

c 

Substituting (V-9) into (V-10) and taking the absolute value of the result gives 

T 
lacl= ir  -'r | • (v-11) 

n       c 

From this it can be seen that the magnitude of the TEM     field is proportional 
mc 

to the rate it is being introduced into the resonator and inversely proportional 

to the difference between the eigenvalues of the TEM     and the TEM     modes. 
mc mn 

Although this result is intuitively satisfying, in that one would expect the por- 

tion of the TEM     mode present to be related to the rate it is being supplied to 
mc 

the resonator, it is difficult to obtain usable results from this approach. 

It is more instructive to determine the requirements on the system for 

maintaining a TEM      mode once this mode has been established.   To do this 
mc 

one assumes that the field on the input mirror is given by 

P    (r \ = Aft   (r \ ■>■ R    (r \   , (V-12) 
ns\ s) nsV s/        nc\ s; 

where 

IAI « ir I . c 



In a double pass through the resonator the field becomes 

Ar R   (r \ + r R   Ir \ . 
n nsV a)       c nc\ s/ 

By normalizing the phase one obtains, approximately, 

R    (r \ +  |r  IR   fr\. 
nsV s^ c    ncV s/ 

To this is added the input field, TR    (r \, and 
s nc\ s/ 

R 

(V-13) 

lr lAr 
c      n (V-14) 

T | Ar c       n 
ns (rs)+  [,rcl + Ts]Mrs) (V-15) 

is obtained. 

Normalizing the field to a peak magnitude of one gives, approximately, 

lr |Ar 

r  ! + T 1/ ns c s 
is)        ncV s) (V-16) 

This term represents the field given by (V-12) after one complete iteration of 

the model. 

A sufficient condition for the continued dominance of the TEM„   mode mc 

is that with each iteration the TEM      mode decreases in magnitude.   This 
mn 

means that the coefficient of R    [ r ) decreases in magnitude with each itera- 

tion; therefore, by comparing the coefficients of R    (r \ as given by (V-12) 

and (V-16) one obtains the resulting requirement on T   that 
s 

T  > ir I - ir s n c (V-17) 

Thus, if the TEM      mode dominates, then its dominance will be maintained if 
mc 

the condition in (V-17) holds.   It should be noted that the normally dominant 
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mode of the resonator is the TEM      mode; therefore, mn 

ir i - ir i > o . n c 

Further insight into the operation of this mode control laser system can 

be had by considering mode losses.   As has been pointed out previously, for a 

given mode to dominate it must experience the least loss in the system.   The 

TEM      mode is the dominant mode of the output resonator when there is no 
mn 

input from the control resonator.   In a round trip through the resonator this 

mode has a power loss given by   1 -  IT  |2|.   The TEM      mode in the output 
L n J mc 

resonator, under the same condition of no input from the control resonator, has 

a power loss given by   1 -  !T  I2 . 

Suppose now that the field structure in the output resonator is com- 

posed of the TEM      and TEM      modes and that a TEM      mode from the mn mo mc 

control laser is introduced into the resonator.   The round trip pcwer loss of 

the TEM      mode remains the same; however, because of the input field the mn 

round trip power loss of the TEM      mode decreases.   Therefore, if one mc 

assumes that the input signal directly decreases the power loss of the TEM 
mc 

mode, the TEM      mode will dominate if the condition exists that 
mc 

("l -   |Tcl
2 - Ts

2l <  fl -   |rQ|
21 . (V-18) 

This inequality simply states that for the TEM      mode to dominate, the power 
mc 

loss of this mode must be less than the power loss of the TEM      mode. mn 

Solving (V-18) for T    one obtains 

|2l/2 T > fir I2 - ir l2l; 

s      I   n c    | 
(V-19) 
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By comparing (V-17) and (V-19) one can show that tue T  given here is 
8 

greater than that required for mode maintenance.   This follows directly from 

flie fact that since 

ir I > ir i , n c 

r V2 

ir i - ir I <   ir I2 - ir i2     . (v-20) n c       |_   n c  J 

There are now two basic results pertaining to the mode control system. 

In Or-17) there is a requirement on T  for mode maintenance, and in (V-19) 
s 

there is a requirement on T  for mode switching.   Several tests were made on 
8 

the numerical model of the mode control system to check these results; in all 

cases the computational results agreed with those specified in (V-17) and 

(V-19). 

One of the first tests was to check the requirement for mode main- 

tenance.   Utilizing the techniques described in Chapter IV the normally 

dominant mode and a higher loss mode of a self-focusing resonator were deter- 

mined.   The higher loss mode was used as the control field, R    (r\, and a 

slightly perturbed R   (r \ was used as the initial field within the resonator. 

With a T   slightly greater than the minimum,   ||r   I -  IT  I!|, it was found 
1 J 

that the field within the resonator remained R    (r ^.   For cases where T 
nc\ s/ s 

was less than the minimum, the final field converged to configurations other 

than R    (r \. 
nc\ 8/ 

In the next test of the model, the same resonator and the same input 

field were used, but the initial field was chosen so that it contained a large 

component of the normally dominant field, R    (r \.   It was found that the 
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condition on T   for mode maintenance was not sufficient to cause the field to s 

converge to the TEM      mode.   That is, with a T   slightly greater than 

|ir  I -   IT  11, the field would not converge to the TEM      mode. L   n c J ° mc 

In general it was found that if the initial field had a large component of 

R    /r \, then T   had to be considerably larger than lir  I -  |r  I   before the 

field would converge to the TEM      mode.   In fact, for all these cases it was 
mc 

found that only if T  were greater than that dictated by the power loss require- 
8 V 

ments (that is, T   >      r  I2 -  |r  I2     I  would the field converge to the 

TEM      mode, 
mc 

For an example, some of the results obtained for a particular case are 

presented below.   The output resonator had a Fresnel number of one.   It was 

formed by plane circular mirrors.   The input mirror had a constant reflectivity. 

The output mirror was a zoned mirror having thirteen half period zones. 

Seven of the zones were completely »• ansmi tting, and the remaining six zones 

were completely reflecting.   The eigenvalue of the TEM      mode had a magni- 
mn 

tude of (9.351), and the eigenvalue of the TEM      mode had a magnitude of 
mc 

(Ö. 126).   The initial field distribution had a strong R    [r] component.   The 

final fields obtained for different values of T  are shown in Figures 10 and 11 
s 

as a function of the normalized mirror radius; the field magnitudes are shown 

in Figure 10 and the corresponding phases are shown in Figure 11.   When T 
s 

was zero, the condition of no input signal existed and the field converged to 

its normally dominant mode.   When T  had the value (0.4), the condition 
s 

T  > 
s 

[!!•/- lr/] 
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existed, and as expected the field converged to the TEM      mode.   This means 
mc 

that there was enough input to switch the resonator field from the TEM      mode. 
mn 

For T  equal to (0.2) or (0.3) there was not sufficient input to cause the modes s 

to switch, and the fields converged to mixed modes. 

This same resonator was examined for the condition of the initial field 

being almost a pure TEM      mode.   It was found that the field would remain mc 

TEM     if T   obeyed the inequality expressed in (V-17). 

The results of the analysis of the mode enhancement model indicate 

that the mode enhancement technique could be used for transverse mode con- 

trol.   In using this technique one should make use of the finding that less input 

signal is required for mode maintenance than is required to switch modes.   In 

a practical sense, this means that the control oscillator should be activated 

before the output oscillator; this would assure that the initial field had the 

desired configuration. 
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CHAPTER VI 

ANALYSIS OF THE SELF-FOCUSING RESONATOR 

The basic self-focusing resonator is formed by flat, circular mirrors 

having equal radii. One of the mirrors has a uniform reflectivity of unity, it 

is designated as the input mirror. The other mirror is a zoned mirror, it is 

designated as the output mirror. The characteristics of this zoned resonator 

are established by the Fresnel number of the resonator and the configuration 

of the zoned mirror. 

The zoned mirror is usually composed of alternately reflecting and 

transmitting zones of equal area.   The reflecting zones have a reflectivity of 

unity.   The transmission zones are assumed to have no absorption losses, but 

they may be partially reflecting.   For some cases considered, the total number 

of zones and the number of transmission zones relative to the number of 

reflection zones have been varied.   The areas of both the reflecting and trans- 

mitting zones are usually fixed so that they correspond to half-period zones; 

however, some cases ha"e been considered in which the area of the zones was 

different from this. 

The method used in analyzing a given resonator was first to calculate 

the resonator mode structure.   This was accomplished by using the numerical 

techniques discussed in Chapter IV.   This gives the fields on both mirrors in 
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terms of relative amplitudes and phases, as well as the eigenvalue of the mode 

obtained.   From this eigenvalue the double pass power loss and double pass 

phase shift are directly obtainable.   The next step was to utilize the transmis- 

sion characteristics of the zoned mirror and the resonator field on the output 

mirror to specify the transmitted field.   This transmitted field was used as a 

source field and the exterior fields were then calculated.   These exterior fields 

included the power transmitted through the zoned mirror, the field along the 

resonator axis, and the field in the focal plane.   The equations describing these 

fields are given in Chapter II.   They were evaluated by using straightforward 

numerical integration techniques.   A numerical sampling density of 100 points 

across the resonator mirrors was generally used; however, for some of the 

resonator configurations analyzed, higher sampling densities were required. 

As was mentioned in Chapter IV, the sampling densities were such that the 

resonator modes were obtained to within an accuracy of about 1 percent.   The 

same sampling densities as those used to determine the resonator modes were 

used in calculating the exterior fields. 

In the following sections of this chapter the results of the analysis of 

the self-focusing resonator are presented. 

A.    A Zoned Resonator 

As a means of illustrating some of the basic characteristics of the 

self-focusing resonator, the analysis of a specific zoned resonator is presented 

in this section.   The Fresnel number of this resonator was eighteen,  and 

the output mirror was composed of thirteen half-period zones.   Six of the zones 
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were completely reflecting, and the remaining seven were 50 percent reflecting 

and 50 percent transmitting.   The partially transmitting zones provided the 

output coupling from the resonator, and this output field established the focused 

field.   The transmissivity of the input mirror was uniform and had a value of 

one. 

In order to provide a base reference for this zoned resonator, a resona- 

tor having the same Fresnel number but unzoned mirrors was also analyzed. 

This unzoned resonator represents the usual resonator configuration where 

both mirrors have uniform reflectivities. 

The TEM00 mode structure of the unzoned resonator is shown in 

Figures 12 and 13.   The amplitude oi' the field is given in Figure 12 and the 

phase is given in Figure 13.   The amplitude of the field is given on a relative 

basis such that the maximum magnitude is unity, and the phase is normalized 

so that the phase at the center of the mirror is zero.   The radius is also given 

in a normalized form; it is obtained by dividing the actual radius by the maxi- 

mum radius of the mirror.   The TEM00 mode is symmetrical about the resona- 

tor axis; therefore, the field is completely specified by describing the field on 

a single radius.   Since the mirrors are identical, the normalized fields on the 

two mirrors of the resonator are also identical. 

The round-trip power loss for this TEM00 mode was found to be 0.7 per- 

cent.   This, of course, is for mirrors having reflectivities of unity.   Thus, 

this loss represents the diffraction loss of the resonator; it is a measure of the 

radiation lost over the edges of the mirrors by a wave making a double pass 

through the resonator. 
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Figure 12.   Relative Amplitude of the TEM00 Mode; Resonator Fresnel 
Number =18, Unzoned Resonator 
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Figure 13.   Relative Phase of the TEM00 Mode; Resonator Fresnel 
Number =18, Unzoned Resonator 
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Although the amplitude of the field has a distribution that is quite far 

from uniform, the phase variation is small, changing only by about 55 degrees 

from the center to the edge of the mirror.   Most of this phase variation occurs 

at the edge of the mirrors.   Thus, since the amplitude is small at the outer 

edge of the mirrors, the phase variation should have little effect on a trans- 

mitted field.   That is, if one of the mirrors were made partially transmitting, 

the transmitted field would be almost the same as that obtained by a field having 

the same amplitude distribution but a constant phase.   Therefore, if one of the 

resonator mirrors could be replaced by a zoned mirror, without distributing 

the resonator field structure, one would expect some focusing of the output 

radiation.   The problem is, of course, that when the mirror is changed, the 

resonator mode configuration is also changed.   This new field structure may or 

may not be capable of producing a focused output. 

All the resonators examined in this study exhibited the characteristic 

that the field of the unzoned resonator was more regular than the corresponding 

field of the zoned resonator.   This leads one to the point of view of considering 

the field structure of the unzoned resonator as a standard and the fields of the 

zoned resonators as perturbations of this standard. 

The field configuration of the TEM00 mode for the zoned resonator is 

shown in Figures 14 through 17.   The field representing this mode on the 

output mirror is given as an amplitude and phase in Figures 14 and 15 

respectively.   The corresponding field on the input mirror is shown in 

Figures 16 and 17.   Because the resonator mirrors are not identical the 
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Figure 14.   Relative Amplitude of the TEM00 Mode on the Output Mirror; 
Resonator Fresnel Number = 18, Output Mirror Zoned, Reflectivity 

of Transmission Zones = 0.500 (13 half-period zones, 7 transmission) 
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Figure 15.   Relative Phase of the TEM00 Mode on the Output Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0.500 
(13 half-period zones, 7 transmission) 
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Figure 16.   Relative Amplitude of the TEMoo Mode on the Input Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0. 500 
(13 half-period zones, 7 transmission) 
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Figure 17.   Relative Phase of the TEM00 Mode on the Input Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0. 500 
(13 half-period zonea, 7 transmission) 
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resonator is unsymmetrical.   This accounts for the different field configura- 

tions on the two mirrors.   It is of interest to note that the field on the output 

mirror is more regular than the field on the input mirror; this is a general 

characteristic of the mode patterns in zoned resonators.   An examination of 

the resonator equations makes this readily apparent.   The source for the field 

on one mirror is the field on the other mirror multiplied by the amplitude 

reflectivity of that mirror.   Thus, because of the zones on the zoned mirror, 

the source for the field on the output mirror is smoother than the source for 

the field on the input mirror. 

The gross character of the amplitude distribution on the output mirror 

of the zoned resonator is similar to that of the unzoned resonator.   This can be 

seen by comparing Figures 12 and 14.   In details, however, the fields differ. 

As can be seen by comparing Figures 13 and 15, the phase of the field on the 

output mirror of the zoned resonator varies ;Much more rapidly with mirror 

radius than does the phase of the field of the unzoned resonator.   The differ- 

ences in the two fields resulted entirely from the change in characteristics of 

the output mirror.   Changing the output mirror from a solid mirror to a zoned 

mirrcr resulted in a redistribution of the resonator field. 

The double pass power loss for the TEM00 mode in the zoned resonator 

is 31. 5 percent; this is considerably more than the 0.7 percent obtained for 

the uuzoned resonator.   However, the loss from the zoned resonator includes 

both diffraction and transmission losses.   There are seven transmission zones 

out of a total of thirteen half-period zones on the output mirror, and each 

transmission zone has a power transmission of 50 percent.   Therefore, from 
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a purely geometrical point of view, the transmission losses would be about 

27 percent. 

A portion of the output from the zoned resonator is focused.   To obtain 

a measure of this focusing, the amplitude of the field along the resonator axis 

was calculated by using the field transmitted through the output mirror, nor- 

malized to a maximum magnitude of unity, as the source field.   The results 

are given in Figure 18.   The ordinate represents the amplitude of the field on 

the resonator axis relative to the source field.   The abscissa is given in terms 

of M, the Fresnel number of the output mirror as viewed f distance from the 

output mirror along the resonator axis.   This Fresnel number is given by 

a 2 

where a   is the radius of the output mirror, X is the wavelength, and f is the 

distance from the output mirror to the point on the axis where the resonator 

field was evaluated.   Thus, M is a measure of reciprocal distance from the 

resonator. 

The axial field uas a definite peak, or focus, at a value of M slightly 

less than thirteen.   From the analysis of the zoned mirror given in Chapter III, 

it can be seen that the focal point of the mirror is located at a value of M equal 

to the number of zones on the output mirror; in this case that would be thirteen. 

The analysis in Chapter III assumed a constant phase source; therefore, it is 

seen that the phase variations of the field on the output mirror did not greatly 

change the focal distance.   This has been the case for all of the zc ■ d resona- 

tors studied; that is, if a focused output was obtained, then the focal distance 
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Figure 18.   Relative Amplitude of Field Along Resonator Axis; Resonator 
Fresnel Number =18, Output Mirror Zoned, Reflectivity 
of Transmission Zones = 0. 500 (13 half-period zones, 

7 transmission), Resonator Mode TEM00 
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was primarily a function of the zoned mirror, and only a secondary function of 

the resonator field. 

It might be illuminating to determine the actual focal distance for a 

typical laser.   A convenient laboratory-sized carbon dioxide laser would be a 

few centimeters in diameter; for this example (5.08) centimeters will be used. 

The wavelength of this type of laser is 10.6 microns.   Therefore, the focal 

distance is given approximately by 

F w 
(2.54): 

(10.6 x 10"4)(13)   * 

F « 467 cm. 

From Figure 18 it can be seen that the field at the focal point has an 

amplitude of (5.3).   Since this field is referenced to the source field, the focal 

field has an amplitude (5.3) times as large as the maximum amplitude of the 

field immediately outside the zoned mirror.   Thus, the intensity at the focal 

point is about (28) times as large as the maximum intensity immediately 

outside the zoned mirror.   This increase in intensity is one measure of the 

focusing characteristics of the self-focusing resonator.   Although this increase 

is not extraordinarily large, it was achieved without the utilization of lenses or 

secondary mirrors. 

The focal plane is defined as the plane orthogonal to the resonator axis 

and passing through the focal point.   The field in this focal plane was calculated 

as a function of distance from the resonator axis.   The amplitude of this field 

is given in Figure 19 as a function of distance from the resonator axis.   As 

before, the relative amplitude represents the amplitude of the field relative to 
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Figure 19.   Relative Amplitude of Field in Focal Plane; Resonator 
Fresnel Number =18, Output Mirror Zoned, Reflectivity 

of Transmission Zones = 0. 500 (13 half-period zones, 
7 transmission), Resonator Mode TEM00 
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the source field normalized to a maximum amplitude of one.   The abscissa, 

representing the distance from the resonator axis, has been normalized in 

terms of the radius of the output mirror; hence, a normalized radius of one 

represents a distance from the resonator axis equivalent to the radius of the 

output mirror. 

The power passing through the main lobe in the focal plane waü deter- 

mined in terms of the total power transmitted out of the zoned resonator.   It 

was found that approximately 24 percent of the output power was concentrated 

in the main lobe.   This is a fairly typical value; for the majority of cases the 

percent of the output power passing through the main lobe varied from about 

18 to 25 percent.   However, the peak intensity of the focused field and the width 

of the main lobe were functions of both the characteristics of the source field 

and the characteristics of the zoned mirror. 

In the unzoned resonator, where both mirrors have uniform reflectivi- 

ties. the TEM00 mode is dominant.   However, in the zoned resonator this is 

not always the case.   For this particular zoned resonator the TEM00 mode had 

the least loss for zero-order angular degeneracy.   However, it was found that 

the TEM10 mode had less loss.   This mode has a first-order angular degeneracy 

and a zero-order radial degeneracy.   The double pass power loss of this mode 

was found to be 30.6 percent, slightly less than the 31. 5 percent loss for the 

TEMQO mode. 

The field configuration for the TEM10 mode is given in Figures 20 

through 23.   The amplitude of the field on the output mirror is shown in 

Figure 20 and the corresponding phase is shown in Figure 21.   The amplitude 
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Figure 20.   Relative Amplitude of the TEM10 Mode on the Output Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0. 500 
(13 half-period zones, 7 transmission) 
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Figure 21.   Relative Phase of the TEM10 Mode on the Output Mirror; 
Resonator Fresnel Number = 18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0. 500 
(13 half-period zones, 7 transmission) 
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Figure 22.   Relative Amplitude of the TEM10 Mode on the Input Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0. 500 
(13 half-period zones, 7 transmission) 
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Figure 23.   Relative Phase of the TEM10 Mode on the Input Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0. 500 
(13 half-period zones, 7 transmission) 
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ami phase on the input mirror are presented in Figures 22 and 23 respectively. 

These fields represent the radial variation only; the azmuthal variation is 

sinusoidal.   Thus, the actual field would be represented by the radial variation 

given in the figures multiplied by sin <& where <f> represents the angular posi- 

tion on the mirrors.   For the fields given, <f> was (71/2) radians. 

The fields on the mirrors are similar to the general configuration for 

the TEM,0 mode obtained in unzoned resonators:  The fields at the center of 

the mirrors are zero, and each field has a single main peak.   As was the case 

for the TEM00 mode of this zoned resonator, the field on the output mirror is 

more regular than the field on the input mirror. 

It was pointed out in Chapter II that the axial field is zero when the 

angular degeneracy of the resonator mode is not zero.   However, this does not 

mean that there is not a focused output for these higher modes.   A focused out- 

put may exist, but it will be located off axis.   The focused field for this 

resonator operating in the TEMi0 mode was calculated.   The amplitude of this 

field is shown in Figure 24 as a function of normalized radial distance from 

the resonator axis.   The amplitude has been normalized to a peak source field 

of unity.   It was also shown in Chapter II that the angular degeneracy of the 

source field was preserved in the focal field.   Thus, there are two peaks in 

the focal plane, and they are located asymmetrically about the resonator axis. 

As can be seen by comparing Figures 24 and 19, these peaks have amplitudes 

of about 80 percent of the amplitude of the single peak resulting from the 

TEMno mode. 
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Figure 24.   Relative Amplitude of Field in Focal Plane; Resonator 
Fresnel Number = 18, Output Mirror Zoned, Reflectivity 

of Transmission Zones = 0. 500 (13 half-period zones, 
7 transmission), Resonator Mode TEM10 
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B.    Resonator Fresnel Number 

For the unzoned resonator, the field structure of a given mode is 

determined solely by the resonator Fresnel number, and mode dominance is 

determined by the diffraction losses about the edges of the mirrors.   The 

situation is considerably more complicated for the self-focusing resonator. 

For this resonator the mode structure is a function of both the resonator 

Fresnel number and the characteristics of the zoned mirror.   The zoned 

mirror also affects mode dominance; this is because it presents a selective 

transmission loss to the incident field and distorts the reflected field. 

From the resonator equations given in Chapter II it can be seen that for 

fixed mirror parameters, the self-focusing resonator is a function only of the 

resonator Fresnel number.   However, since the effect of the zoned mirror is 

related to the field structure, changes in the resonator Fresnel number some- 

times result in unexpected changes in the resonator characteristics.   By using 

its Fresnel number as a variable, the self-focusing resonator was examined 

in some detail.   The results are presented in this section. 

Consider the zoned resonator formed by flat, circular mirrors having 

equal radii.   The input mirror has a uniform reflectivity of unity.   The output 

mirror is composed of M   half-period zones.   These zones are alternately 

completely reflecting and completely transmitting.   As was shown in 

Chapter III, the number of zones on the output mirror is related to the focal 

length of the mirror by 

a 2 

M   *-$=• . p      \F   ' 
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where a   is the radius of the mirror, \ is the wavelength, and F is focal length. 

Although it has not been mentioned, it should be apparent that if the trans- 

mitted wave is focused F distance in front of the mirror, the reflected wave 

will tend to focus F distance behind the miriw\   The Fresnel number of this 

resonator is given by 

a 2 

N = Td-« 

where (d) is the distance between mirrors.   The Fresnel number gives the 

approximate number of half-period zones on one mirror as viewed from the 

center of the other mirror.   For a fixed wavelength, the Fresnel number can 

be viewed as a measure of the relative size of the resonator; thus, for small 

Fresnel numbers the resonator is "thin" and for large Fresnel numbers it is 

"thick." 

This study has revealed that there are three regions of resonator sizes 

which exhibit distinct characteristics.   These regions are determined by the 

value of the resonator Fresnel number relative to the number of zones on the 

output mirror, and they are designated as follows:  region one refers to 

resonators with Fresnel numbers greater than the number of zones on the output 

mirror, region two refers to resonators with Fresnel numbers approximately 

equal to the number of zones on the output mirror, and region three refers to 

resonators with Fresnel numbers less than the number of zones on the output 

mirror.   These regions may also be described by relating the distance between 

mirrors to the focal length of the zoned mirror.   In region one the focal length 

is greater than the distance between the mirrors, in region two the focal length 

103 



is approximately equal tu the distance between the mirrors, and in region three 

the focal length is less than the distance between the mirrors. 

For all cases studied in region one, and this included resonators having 

Fresnel nu-nbers only a few percent greater than M , fixed resonator modes 

did exist.   However, for every case, the dominant mode structure was highly 

irregular, and sharp focusing of the output could not be achieved.   It should be 

pointed out, however, that the resonator field perturbations caused by the zoned 

mirror can be reduced by making the transmission zones partially reflecting 

and/or reducing the area of the transmission zones.   By careful control of 

these parameters a focused output can then be achieved.   For example, in the 

previous section a focused output was obtained from a resonator having a 

Fresnel number of eighteen and thirteen zones on the output mirror.   For that 

resonator the transmission zones were partially reflecting. 

Region two was unique in that no stable modes were found.   Applying the 

power method to resonators having Fresnel numbers approximately equal to the 

number of zones on the output mirror did not result in the field converging to 

a fixed mode.   The fields were allowed to iterate beyond what is usually 

required to obtain a resonator mode and yet no regularity of the field was 

observed.   This condition would result if several of the resonator modes had 

losses of comparable magnitude.   Possibly, if the system were allowed to 

iterate long enough, a pure mode could be obtained.   However, one would 

expect it to be highly distorted; and therefore no focused output could be 

achieved.   In an attempt to control the field structure of thi3 resonator an 

aperture was placed immediately in front of the input mirror.   This effort was 
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largely unsuccessful.   Although this modified resonator had stable fields, the 

resulting field configurations were extremely distorted. 

In region three it was found that fixed modes do exist, and that a 

focused output could be achieved.   The behavior of resonators in this region 

will now be considered for the case where the zoned mirror has thirteen half- 

period zones.   As was mentioned above, the transmission zones have a trans- 

missivity of unity, and the refelecting zones have a reflectivity of unity.   Most 

of the resonators considered had seven transmission zones, but in a few cases 

the transmission and reflection zones were reversed.   To keep this clear, the 

number of transmission zones is specified on each figure given herein. 

The amplitudes of the TEM00 fields on the input mirror for resonators 

having Fresnel numbers of (0.4), (1.0), (2.0), and (4.0) are shown in 

Figure 25.   The corresponding fields on the output mirror are shown in 

Figure 26.   The amplitude distributions for the TEM10 fields are shown in 

Figures 27 and 28; these fields have an angular degeneracy of one and a radial 

degeneracy of zero.   The amplitude distributions for the TEM01 fields are 

shown in Figures 29 and 30; these fields have an angular degeneracy of zero 

and a radial degeneracy of one.   All of these distributions exhibit the charac- 

teristic of decreasing regularity for increasing Fresnel number.   Further, the 

fields on the output mirror are invariably more regr' -•■*• than the corresponding 

fields on the input mirror. 

The double pass power loss for the three lowest-order modes are 

shown in Figure 31 as a function of resonator Fresnel number.   All of the 

modes are quite lossy; however, since the geometrical transmission loss of the 
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Figure 25.   Relative Amplitude of the TEMQ,, Mode on the Input Mirror 
for Various Values of Resonator Fresnel Number; Output 
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Figure 26.   Relative Amplitude of the TEM00 Mode on the Output Mirror 
for Various Values of Resonator Fresnel Number; Output 

Mirror Divided into 13 Half-Period Zones, 7 Transmission 
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Figure 27.   Relative Amplitude of the TEM10 Mode on the Input Mirror 
for Various Values of Resonator Fresnel Number; Output 

Mirror Divided into 13 Half-Period Zones, 7 Transmission 
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Figure 28.   Relative Amplitude of the TEM10 Mode on the Output Mirror 
for Various Values of Resonator Fresnel Number; Output 

Mirror Divided into 13 Half-Period Zones, 7 Transmission 
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Figure 29.   Relative Amplitude of the TEM0, Mode on the Input Mirror 
for Various Values of Resonator Fresnel Number; Output 

Mirror Divided into 13 Half-Period Zones, 7 Transmission 
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Figure 30.   Relative Amplitude of the TEM0i Mode on the Output Mirror 
for Various Values of Resonator Fresnel Number; Output 

Mirror Divided into 13 Half-Period Zones, 7 Transmission 
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Zones, 7 Transmission 

output mirror is over 50 percent, large losses are to be expected.   What is 

perhaps unexpected is the crossover of the loss curves for the TEMo0 and 

TEMi0 modes.   For Fresnel numbers between about 1. 5 and 8.0 the TEMi0 

mode has the least loss; hence, in this region it is the dominant mode.   From 

the point of view of obtaining a focused output, this dominance of the TEM10 

mode is undesirable.   As was pointed out previously, the transmitted field for 

this mode is zero on axis and it produces a double peak in the focal plane. 

Thus, in order to produce the desired focused field, mode control would be 

needed so as to force the resonator to oscillate in the TEM00 mode. 

This change in the usual order of mode losses has been found to be a 

characteristic common to many zoned resonators.   It is caused by the inner 

reaction of the zoned mirror with the resonator field.   The zoned mirror 

presents a selective transmission loss to the incident field; modes tending to 
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have large fields coincident with the transmission zones have greater trans- 

mission losses than modes which peak in regions coincident with reflection 

zones.   The zoned mirror also diffracts the reflected field; this may change the 

resonator diffraction losses.   The situation is further complicated in that dif- 

fraction losses are also dependent on the resonator Fresnel number. 

In the limiting case of very low Fresnel numbers, diffraction losses 

should dominate the loss mechanism and the order of the mode losses should be 

established by this loss.   Hence, one would expect the TEM00 mode to have the 

least loss for resonators having very small Fresnel numbers.   This has been 

found to be true for all zoned resonators examined in this study.   For the 

resonators presently being considered the TEM00 mode has the least loss for 

all Fresnel numbers less than about (1.5). 

On the other end of region three, that is where the resonator Fresnel 

number approaches the number of zones on the output mirror, stable resonator 

modes could not be obtained.   For this particular system, eight was the largest 

Fresnel number fo? which stable modes were obtained. 

The double pass phase shifts of the TEM00, and TEM10, and TEM01 

modes are shown as a function of Fresnel number in Figure 32.   The positive 

phase shift indicates that the phase velocity is greater than the speed of light. 

As is usual,   the actual phase shift is that specified in the figure plus the 

geometrical phase shift of (2kd) radians, where (k) is the wave number and 

(d) is the distance between mirrors.   Although the field structures and losses 

of these zoned resonators are quite different from those of resonators formed 

by solid mirrors, it was found that the phase shifts are remarkably similar. 
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Figure 32.   Double Pass Phase Shift as a Function of Resonator 
Fresnel Number; Output Mirror Divided into 13 Half-Period 

Zones, 7 Transmission 

To within the accuracy of reading the curves, the phase shift of the TEM10 mode 

given in Figure 32 is the same as that given by Li1 for the solid mirror case. 

For low Fresnel numbers the phase shifts for the TEM00 modes also agree quite 

closely; ev°n for the larger Fresnel numbers they agree to within a factor of 

two. 

The focused output field was determined for various values of resonator 

Fresnel number; some of the results are presented in Figure 33.   In this figure 

the axial fields about the focal point are given for resonators having Fresnül 

numbers of (0. 4),  (1.0),  (2.0), and (4.0); the distribution shown in the 

lLi, Tingye, "Diffraction Loss and Selection of Modes in Maser Resona- 
tors with Circular Mirrors" The Bell System Technical Journal, Volume 44, 
pp. 917-932 (1965).    (It should be noted t.iat Li gives the single pass phase 
shif.-. therefore, his results m-ist be doubled before comparing to those given 
heroin.) 
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Figure 33.   Relative Amplitude of Field Along Resonator Axis for Various 
Values of Resonator Fresnel Number; Resonator Mode TEM00; 

Output Mirror Divided into 13 Half-Period Zones, 7 Transmission 
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remainder of the curve is for the Fresnei number of (0.4)    The amplitudes of 

these axial fields are given relative to the source field normalized to a peak 

amplitude of unity.   These axial fields were obtained for the condition of the 

resonator operating in the TEMQ0 mode. 

For this resonator the zoned mirror was fixed.   Therefore, the differ- 

ences in the focused fields are due entirely to differences in the source fields. 

The source fields are the transmitted portions of the TEMQ0 resonator fields. 

The amplitude of these resonator fields was given in Figure 26, where one sees 

that the average amplitudes of the source fields decrease with increasing 

Fresnei number; a corresponding decrease in the focused field would be 

expected.   In determining the focused fields, the phases of the source fields 

must also be considered; the phases are not given here, but as a general rule 

the phase variation across the output mirror increases with resonator Fresnei 

number, and it also increases as the irregularity of amplitude distribution 

increases. 

So as to afford another view of the focusing properties of this resor 

the focused intensity per unit output power was determined.   The results are 

given in Figure 34 as a function of resonator Fresnei number.   The focused 

intensity per unit output power is a measure of the effectiveness with which the 

output power is utilized in achieving a focused output.   It should be noted that 

resonators having small Fresnei numbers have large diffraction losses, and 

that diffraction losses are not considered as part of the output power.   Themost 

noticeable feature of the curve in Figure 34 is its relative flatness.   This 
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Figure 34.   Intensity at Focal Point per Unit Output Power as a Function 
of Resonator Fresnel Number; Resonator Operating in the TEM00 

Mode; Output Mirror Divided into 13 Half-Period Zones, 7 Transmission 

indicates that fields inducive to large output powers are also inducive to good 

focusing. 

To show that the results given in Figure 34 are reasonable, the limiting 

case of a uniform distribution on the output mirror can be considered.   In 

practice, a uniform distribution is approached quite closely by resonators 

having very small Fresnel numbers.   For instance, when the resonator 

Fresnel number is (0.1) the TEMo0 field on the output mirror has a peak in the 

center and smoothly falls off to 95 percent of the peak at the edge of the mirror, 

and the phase variation across the mirror radius is only a few degrees. 

Therefore, by assuming a uniform source field of unit magnitude and 

by using equations (n-14) and (11-17) the transmitted power can be expressed 

by 

1 

! 
0 

Pm = 27rC!    f (T \2r dr T T jM z)   z    2 
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where C   is a proportionality constant and h \2 is the power transmission 

coefficient of the zoned mirror.   This transmission coefficient has a value of 

one over the transmission zones and a value of zero over the reflection zones. 

Therefore, since there are thirteen equal area zones on the output mirror, and 

seven of these zones are transmission zones, 

T       T ©'• 
From the results of Chapter III one can deduce that the field at the focal point 

is equal to twice the number of transmission zones.   Thus, the intensity at the 

focal point is given by 

If = CT(2 x 7)2= CT(196)   . 

Therefore, for the caae of a very small Fresnel number, the intensify per unit 

output power is given approximately by 

h 
-^~ * (116)   . 

T 

In Figure 34 one sees that this value corresponds quite closely to the value 

obtained from the curve for a Fresnel number approaching zero. 

The results so far presented in this section have been limited to those 

obtained from a zoned mirror having a transmitting zone in the center.   Since 

the TEM00 mode has a peak in the center and the TEM10 mode has a zero in the 

center, the reversing of the transmitting and reflecting zones has a large 

change on the relative mode losses.   In Figure 35 the double pass loss for the 

TEM00 and TEM10 modes are shown for the case of a center reflecting zone; 

for comparison the double pass loss curves for the other case are repeated. 
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Figure 35.   Double Pass Power Loss as a Function of Resonator 
Fresnel Number; Output Mirror Zoned 

The major difference between the two types of resonators is the relative order 

of the losses.   For resonators having seven reflecting zones no crossover foi 

the TEMo;) and TEM10 loss curves was found.   The general decrease in loss for 

this case can be attributed partially to the decrease in transmission loss. 

C.   Transmission Zone Reflectivity 

If the resonator mode structure were not a function of transmission 

zone reflectivity, the maximum intensity at the focal point would be obtained 

for zero reflectivity.   This, of course, is because, for the lossless mirrors 
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considered, minimizing the reflectivity is equivalent to maximizing the trans- 

missivity.   Thus, the condition of minimum transmission zone reflectivity 

would result in maximum resonator output.   However, the mode structure Is a 

function of transmission zone reflectivity, and in general it has been found that 

a decrease in the transmission zone reflectivity results in an increase in the 

perturbation of resonator mode structure.   Thus, since the focused field is a 

function of both the resonator mode structure and the zoned mirror, it might 

be concluded that an optimum value of transmission zone reflectivity exists. 

For some resonator configurations an optimum value does indeed exist. 

An investigation has been made as to the characteristics of the self- 

focusing resonator as a function of transmission zone reflectivity.   The size of 

the zoned mirror was fixed at thirteen half-period zones; seven of these zones 

were transmission zones.   Two values of resonator Fresnel number were con- 

sidered, one and eighteen.   These values of Fresnel number were chosen as 

they typify the two cases of the focal length of the zoned mirror being less than 

the resonator length and the focal length of the zoned m'rror being greater than 

the resonator length. 

The relative amplitudes of the TEMo0 fields on the output mirror, for 

various values of transmission zone power reflectivity, p 2, are presented in z 

Figure 36 for the case where the resonator Fresnel number is one.   The cor- 

responding phase shifts are given in Figure 37.   For p 2 equal to zero the z 

resonator has the previously considered configuration of totally transmitting 

transmission zones.   For p 2 equal to one the transmission zones on the output 

are nonexistent, and the resonator has the usual unzoned configuration.   The 
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field far this condition of p 2 equal to unity was obtained from Li.2 

As can be seen in Figures 36 and 37, changing the transmission zone 

reflectivity only has a small effect on the resonator fields.   It should be noted, 

however, that although the effect is small, decreasing the transmission zone 

reflectivity degrades the resonator field structure; the average amplitude of the 

field decreases and the phase variation increases as the transmission zone 

reflectivity is decreased.   The fact that the changes in the field are only 

slightly affected by «he zoned mirror indicates that the resonator field con- 

figuration is being dominated by diffraction losses over the edges of the 

mirrors. 

For the resonator having a Fresnel number of eighteen the resonator 

fields are strongly affected by the transmission zone reflectivity.   This can 

readily be seen in Figures 38 and 39.   In these figures the fields on the output 

mirror are given for various transmission zone reflectivities.   These fields 

are those having the least loss for an angular degeneracy of zero.   For the 

cases where p 2 is (1.000) and (0. 500) the mode structure is definitely TEM00. z 

However, for p 2 equal to (0.063) it would be difficult to classify the field as 
z 

TEMOQ. 

The double pass power losses for the two resonators are given in 

Figure 40 as a function of transmission zone power reflectivity.   Also shown 

in this figure is a transmission loss curve; this curve represents the geometri- 

cal loss due to transmission through the transmission zones.   On the output 

2Li, op. cit. 
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Figure 38.   Relative Amplitude of the TEM00 Mode on the Output Mirror 
for Various Values of Transmission Zone Reflectivity; Fresnel 

Number of Resonator =18; Output Mirror Divided 
into 13 Half-Period Zones, 7 Transmission 
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Figure 40.   Double Pass Power Loss as a Function of Power Reflectivity 
of the Transmission Zones; Resonator Operating in TEMo0 Mode; 

Output Mirror Zoned (13 half-period zones, 7 tranmission) 

mirror there are seven transmission zones out of a total of thirteen zones; 

therefore, the transmission loss can be expressed as   (7/13H1 - p 2 j .   The 

difference between the total loss and transmission loss gives one a qualitative 

measure of the diffraction loss.   The diffraction losses for the resonator having 

a Fresnel number of one are large everywhere, and they are everywhere 

greater than the diffraction losses of the other resonator.   Except for values of 

reflectivities approaching unity, the resonator losses, for the resonator having 

a Fresnel number of eighteen, are dominated by the transmission losses. 

The double pass phase shifts for the two resonators are given in 

Figure 41.   These phase shifts have the greatest variation in the region of 

small values of transmission zone reflectivity; and as would be expected, the 

resonator having the larger Fresnel number has the greatest variation in phase 

shift. 
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Figure 41.   Double Pass Phase Shift as a Function of Power Reflectivity 
of the Transmission Zones; Resonator Operating in TEM00 Mode; 

Output Mirror Zoned (13 half-period zones, 7 transmission) 

The intensity at the focal point, normalized to unit power out of the 

resonator, has been determined for both resonators.   The results are given in 

Figure 42 as functions of the transmission zone reflectivity.   As was mentioned 

previously, presenting the data in terms of maximum intensity per unit output 

power gives one a measure of the efficiency with which the output power is 

being utilized to create a focused output.   However, as with most normaliza- 

tion schemes, the results must be carefully evaluated.   For example, consider 

the upper curve in Figure 42.   From this curve one might reason that, for 

resonators having a Fresnel number of one, the optimum value of transmission 

zone reflectivity is unity.   However, a reflectivity of unity implies a transmis- 

sivity of zero; hence, there would be no output power.   The curves do, however, 

give one some insight as to the focusing properties of the resonator.   In partic- 

ular, for the resonator having a Fresnel number of eighteen, the most efficient 
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Figure 42.   Intensity at Focal per Unit Output Power as a Function 
of Power Reflectivity of the Transmission Zones; Resonator 

Operating in TEMQQ Mode; Output Mirror Zoned 
(13 half-period zones, 7 transmission) 

use of the output power is achieved for a transmission zone reflectivity of 

about (0.3).   It is shown below that other considerations of the focusing result 

in similar values for transmission zone reflectivity. 

In Figure 43 the intensity at the focal point, normalized by the peak 

intensity immediately outside the resonator, is given as a function of the trans- 

mission zone reflectivity.   Both resonator configurations have maximums for 

the transmission zone reflectivity approximately equal to (0.4).   At this 

maximum, for the resonator having a Fresnel number of one, the intensity at 

the focal point is a factor of about 53 greater than the peak intensity immedi- 

ately outside the resonator.   For the other resonator, the maxim am focused 

intensity is about 29 times greater than the peak intensity immediately outside 

the resonator. 
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Figure 43.   Intensity at Focal Point per Peak Output Intensity as a Function 
of Power Reflectivity of the Transmission Zones; Resonator Operating 

in TEM00 Mode; Output Mirror Zoned (13 half-period zones, 
7 transmission) 

Rather than compare the focused field to the transmitted field, it can 

be compared to the field inside the resonator.   In Figure 44 the intensity at the 

focal point, normalized with respect to the peak intensity inside the resonator, 

is given as a function of transmission zone reflectivity.   For the resonator 

having the larger Fresnel number, the maximum occurs at a transmission 

none reflectivity of about (0.2); at this value of reflectivity the intensity at the 

focal point is about 21 times greater than the peak intensity inside the 

resonator. 

D.   Number of Transmission Zones 

The zoned resonators considered thus far have had a fixed number 

of alternately transmitting and reflecting zones.   In this section the effect 

on the zoned resonator caused by changing the total number of zones is 
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Figure 44.   Intensity at Focal Point per Peak Intensity Inside Resonator 
as a Function of Power Reflectivity of Transmission Zones; 
Resonator Operating in TEM00 Mode; Output Mirror Zoned 

(13 half-period zones, 7 transmission) 

considered, along with the effect caused by changing the number of transmis- 

sion zones relative to the number of reflecting zones. 

First the effect on the resonator caused by changing the number of 

zones will be considered.   The resonator chosen to evaluate had a Fresnel 

number of one.   This resonator was analyzed for the case of thirteen half- 

period zones on the output mirror and for the case of thirty zones on the out- 

put mirror.   The zones on the output mirror were alternately completely 

transmitting and completely reflecting.   The center zone for both output 

mirrors was a transmission zone.   The pertinent results for the two cases are 

tabulated below. 

The field distributions for these two resonators were similar; however, 

the field distribution for the thirteen--one case v/as slightly more irregular 

than the distribution for the thirty-zor     ase.   The differences in the losses 
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Table I.   Characteristics of Resonators Having Different Numbers 
of Zones on the Output Mirror 

Thirteen 
Half-Period Zones 

Thirty 
Half-Period Zones 

Resonator mode TEMoo TEMoo 

Double pass power loss 87% 85% 

Double pass phase shift 34deg 36 deg 

Focal distance M = 12.4 M = 29.7 

Focused intensity per unit 
output power 

86 490 

Half power beam diameter 
in focal plane 

0.05 a 
P 

0.02 a 
P 

are probably due to the fact that the thirteen-zone case has a greater transmis- 

sion loss than does the thirty-zone case.   The focal distances are given in 

terms of the parameter M; hence, the actual focal lengths are given by the 

relation 

F = 
V\M 

where F is the focal length, a  is the radius of the output mirror, and \ is the 

wavelength.   From this is obtained the expected result that if the number of 

zones on a mirror are increased, the focal length decreases.   From the 

chapter on the zoned mirror, Chapter in, one would expect the ratio of the 

focal lengths to be inversely related to the ratio of the number of zones on the 

mirrors.   Thus, if F13 represents the focal length for the thirteen-zone case 

and F30 represents the focal length for the thirty-zone case, one would expect 

?H!r)"(2-3> 
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By u8ini' the data from the table, it is found that the actual value of (FI/F») 

is about 12.4); thus, increasing the number of zones from thirteen to thirty 

decreased the focal distance by a factor of (2.4). 

For the idealized systems considered in Chapter in, the ratio of the 

intensities per unit output power is equal to the square of the number of zones. 

Thus, if I13 and 1^ are defined to be the focused intensities per unit output 

power for the thirteen- and thirty-zone cases respectively, one would expect 

that 

(■Ö-ffl'-«" >• 
By using the data from the table, the actual value is found to be (5.7); thus, 

increasing the number of zones from thirteen to* thirty increased the focused 

intensity per unit output power by a factor of "(5.7). 

The power passing through the main lobe in the focal plane does not change 

signifi cantly when the numbers oi zones is changed from thirteen to thirty.   If the 

data tabulated above are used, the product of the intensity per unit output power 

and the half power area is found tobe 0.0547ra 2 for the thirteen-zone case and 
P 

0.0497ra 2 for the thirty-zone case. This means that, although the peak intensity 

in the focal plane can be increased by increasing the number of zones, the power 

passing through the main lobe will not be increased.   To obtain an increase of this 

main lobe power, the area of the output mirror must be increased. 

The usual zoned resonator is constructed in such a way that all of the 

transmission zones have equal areas.   However, since the TEM00 mode peaks 

near the center of the mirror and falls off toward the edges, the contributions 
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to the focused fields from the outer zones are less than the contributions from 

the central zones.   Therefore, one or more of the outer zones could possibly 

be replaced with a reflection zone without the focused field being seriously 

degraded.   This has practical significance in that the outer zones have the 

least width and therefore would be the most difficult to construct. 

Consider now a resonator having a Fresnel number of one and an output 

mirror that is divided into thirteen half-period zones.   The transmission zones 

have a power reflectivity of (0.36).   This resonator has been analyzed for 

different numbers of transmission zones on the output mirror; the results of 

this analysis are presented below. 

First it must be made clear what zones are present.   The output 

mirror is divided into thirteen half-period zones, and normally seven of these 

zones would be transmission zones.   The transmission zones are considered 

to be numbered from the center outward, and the higher numbered transmission 

zones are removed first.   For example, if this resonator has three transmis- 

sion zones, they are the three inner-most transmission zones.   It bears 

repeating that when a transmission zone is removed it is assumed to be 

replaced wivh a reflection zone. 

The relative amplitudes of the TEM00 mode distributions on the output 

mirror, for the cases of one and seven transmission zones, are given in 

Figure 45.   The corresponding phase shifts are given in Figure 46.   The fields, 

for the cases of two through six transmission zones, lie almost completely 

between the curves in Figures 45 and 46.   Because the Fresnel number of the 

resonator is small and the transmission zone reflectivity is finite, the 
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presence or absence of the transmission zones have little effect on the resona- 

tor field distributions. 

The double pass power loss as a function of the number of transmission 

zones is shown in Figure 47.   Although the geometrical transmission loss 

increases linearly with the number of transmission zones, the double pass 

power loss dees not.   This is, of course, because less power is lost through 

the outer zones.   The double pass phase shifts are given as a function of the 

number of transmission zones in Figure 48. 
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Figure 47.   Double Pass Power Loss as a Function of Number 
of Transmission Zones; Resonator Operating in the TEMQ0 

Mode; Resonator Fresnel Number = 1. 0; Power Reflectivity 
of Transmission Zones = 0. 36 

The relative amplitude of the transmitted field along the resonator axis 

is given in Figure 49 for diherent numbers of transmission zones.   As usual, 

the amplitudes of these axial fields are referenced to the source field having a 

maximum magnitude of unity; for example, the focused amplitude for the seven 
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Figure 48.   Double Pass Phase Shift as a Function of Number 
of Transmission Zones; Resonator Operating in the TEM00 

Mode; Resonator Fresnel Number = 1.0; Power Reflectivity 
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transmission zone case is about (7.3) times as large as the peak amplitude of 

the field immediately outside the resonator. 

The case in which there is a single transmission zone on the output 

mirror can easily be evaluated for the limiting' condition of large distances. 

First one notes that for a mirror having thirteen half-period zones that the 

central zone extends from the center of the mirror to a normalized radial dis- 

tance of (I/N/13) .   Then, by referring to Figures 45 and 46, it can be seen that 

the field on this center zone can be approximated by a uniform field having an 

amplitude of (0. 9).   This value represents an average value of the field across 

the center zone.   On the resonator axis, at large distances from the output 

mirror, the source field will be viewed as having a uniform phase.   Thus, the 

amplitude of the field f distance along the resonator axis, for f large, is given 

approximately by 

137 



8.0 

7 TRANSMISSION ZONES 

3 TRANSHISSION ZONES 

2 TRANSMISSION ZONES 

I    2    3    4    5 

M=(a2Af) 
P 

Figure 49.   Relative Amplitude of Field Along Resonator Axis for Various 
Number of Transmission Zones; Resonator Fresnel Number = 1.0; 
Reflectivity of Transmission Zones = 0.36; Resonator Mode TEM^ 

138 



_,       [(Amplitude of Source Field) (Area of Source)! Ef * I rf J   . 

Since the normalized radius of the transmission zone is (l/vl3), its actnal 

radius is fa. A/13 j, where a  is the radius of the output mirror.   Therefore, 

9) Arap
2/13) 

E. « 
(0.! 

Xf 

Ef«(0.22>   gj.). 

The term (a 2/\f ) is given by M; therefore, 

E   « 0.22M  . 

For small values of M, which correspond to large values of f, this approxi- 

mate value of E  corresponds to the exact value given in Figure 49.   As M 

increases, the axial field becomes less linear with M; this is because the 

source field can no longer be viewed as being uniform.   In fact, viewed from 

the focal point, the phase of the source field varies by ir radians from the 

center of the mirror to the edge of the first zone. 

In Figure 50, the intensity at the focal point per unit output power is 

given as a function of the number of transmission zones.   It is obvious that the 

focused intensf ly does not increase rapidly with increasing number of trans- 

mission zones.   By removing the outer-most transmission zone, the intensity 

decreases by only a few percent. 

A resonator having a larger Fresnel number was also analyzed to deter- 

mine the effects caused by removing some of the outer transmission zones. 

This resonator had a Fresnel number of eighteen, and it was evaluated for 

operation in the TEMoo mode.   The output mirror was divided into thirteen 
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Figure 50.   Intensity at Focal Point per Unit Output Power as a Function 
of Number of Transmission Zones; Resonator Operating in the TEM00 

Mode, Resonator Fresnel Number = 1.0, Power Reflectivity 
of Transmission Zones = 0.36 

half-period zones.   The center zone was a transmission zone.   The power 

reflectivity of the transmission zones was (0. 500).   Two cases were consid- 

ered; in the first case all seven of the transmission zones were used, in the 

second case only the four inner-most transmission zones were used.   It was 

found that by decreasing the number of transmission zones from seven to four 

that the focused intensity per unit output power decreased by only 22 percent. 

This small decrease is explained simply by considering the fields in resona- 

tors having large Fresnel numbers.   These fields have small amplitudes and 

large phase variations at the outer edge of the mirror.   The field for the 

resonator using all seven transmission zones has been presented previously, 

and it might be of interest to examine it again.   The amplitude of this field on 

the output mirror is given in Figure 14 and its phase is given in Figure 15. 
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E.   Transmission Zone Area 

In the chapter on the zoned mirror (Chapter HI) some general 

conclusions were made concerning the relationship between the focusing prop- 

erties of the zoned mirror and the transmission zone area.   In particular, it 

was concluded that to maximize the focused intensify, the area of each trans- 

mission zone should correspond to the area of a half-period zone.   It was also 

concluded that to maximize the focused intensity per unit output power, the 

area of each transmission should correspond to about 74 percent of the area of 

a half-period zone. 

In order to verify that these results could be extended to the zoned 

resonator, the external fields of a zoned resonator were determined for various 

transmission zone areas.   The resonator evaluated had a Fresnel number of 

(0.1) and it was operated in the TEMg0 mode.   The output mirror had thirteen 

half-period zones, the transmission zone reflectivity was zero, and there were 

seven transmission zones on the mirror.   Each transmission zone began at the 

beginning of every odd-numbered half-period zone.   All portions of the zoned 

mirror not transmitting were completely reflecting. 

The amplitudes of the transmitted axial fields are shown in Figure 51. 

These amplitudes are all normalized to the same basis.   The transmission 

zone area for each case is indicated in the figure by a fraction of A; the term 

A represents the area of a half-period zone.   The amplitude at the focal point 

is a maximum for the case in which each transmission zone area is equal to the 

area of a hclf-period zone; therefore, the intensity is also maximum. 
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The intensity per unit output power was also determined. Normalized 

to the same basis, the intensities per unit output power for these cases are as 

follows: For the transmission zone area equal to A the intensity per unit out- 

put power was (2.0), for the transmission zone area equal to (0.74) A the 

intensity per unit output power was (2.3), and for the transmission zone area 

equal to (0.5) A the intensity per unit output power was (2.0). 

As was predicted in Chapter III, maximum focused intensity is achieved 

when each transmission zone area is equal to the area of a half-period zone, 

and maximum focused intensity per unit output power is achieved when each 

transmission zone area is equal to 74 percent of the area of a half-period zone. 

For some resonators it may be desirable to reduce the area of the 

transmission zones for reasons other than maximizing the intensity per unit 

output power.   For instance, decreasing the transmission zone area decreases 

the perturbation of the zoned mirror on the resonator mode structure.   To 

demonstrate this, the lowest-order mode, for zero angular degeneracy, was 

determined for a resonator having the following characteristics: resonator 

Fresnel number equal to eighteen, thirteen, zones on the output mirror, and 

reflectivity of transmission zones equal to zero. 

With each transmission zone having an area equal to the half-period 

zones, the amplitude of the field on the output mirror is that given in 

Figure 52.   The double pass power loss is 72 percent, and the relative 

intensity at the focal point is (6.7). 

For the next case the same resonator was used except the area of the 

first three transmission zones was reduced to one-half their original value. 
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Figure 52.   Relative Amplitude of the TEMQO Mode on the Output Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones =. 0.000 
(13 half-period zones, 7 transmission) 
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The amplitude of 11» field on the output mirror for this case is given in 

Figure 53.   Hie double pass power loss for this case is 56 percent, and the 

relative intensity at the focal point is (7.4).   Thus, one sees that reducing the 

areas of some of the transmission zones resulted in better focusing as well as a 

decreased power loss. 
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Figure 53.   Relative Amplitude of the TEMQO Mode on the Output Mirror; 
Resonator Fresnel Number =18, Output Mirror Zoned, 

Reflectivity of Transmission Zones = 0.000 
(13 zones of mixed size, 7 transmission) 
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CHAPTER VH 

SUMMARY AND CONCLUSIONS 

The zoned mirror selectively reflects incident fields and it tends to dis- 

tort reflected fields.   These effects impart interesting, but limiting, charac- 

teristics to the zoned resonator.   For instance, the resonator mode having the 

least loss is often of higher order than the usually dominant TEMQQ mode. 

The zoned mirror produces the best focusing for the field configuration which 

most closely approximates a uniform wave; this, of course, would be the TEMQQ 

mode.   Thus, if the focusing properties of the zoned resonator were to be 

realized practically, mode control would be required. 

For a zoned resonator in which the output mirror consisted of alter- 

nately totally reflecting and totally transmitting zones of equal area the follow- 

ing were observed: When the focal length of the zoned mirror was less than 

the resonator length, stable resonator modes were obtained and sharp focusing 

of the output was achieved.   When the focal length of the resonator was approxi- 

mately equal to the resonator length, stable resonator modes were not obtained. 

When the focal length of the resonator was greater than the resonator length, 

stable modes were obtained, but sharp focusing of the output could not be 

achieved.   Because of this finding it was concluded that focusing at large dis- 

tances was not feasible. 
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The mode structures of zoned resonators were more irregular than the 

corresponding mode structures of unzoned resonators.   It was found that the 

mode structures of zoned resonators could be made more regular by increas- 

ing the reflectivity of the transmission zones and/or decreasing the area of the 

transmission zones.   The irregularity of the resonator fields was more 

pronounced ior resonators having large Fresnel numbers than for those having 

small Fresnel numbers. 

For resonators having small Fresnel numbers, the maximum focused 

intensity was achieved when the reflectivity of the transmitting zones was zero 

and the areas of the transmitting and reflecting zones were equal.   However, 

maximum focused intensity per unit output power was achieved when the area 

of the transmitting zones was reduced and the area of the reflecting zones 

correspondingly increased.   The optimum transmission area was about 

74 percent of the area of the half-period zones.   Optimum values of reflectivity 

and area for resonators having large Fresnel numbers are almost impossible to 

predict; this is because the field structures for these resonators are strongly 

dependent on the characteristics of the zoned mirror.   However, optimum 

values do exist, and for a given resonator configuration they could be found. 

Some of the zoned resonators analyzed had focused intensities several 

times greater than the maximum intensity of the resonator field.   However, 

the power passing through the main lobe in the focal plane was limited to about 

20 percent of the total power transmitted out of the resonator. 
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